Sotiris E. Nikoletseas (Ed.)

Experimental
and Efficient
Algorithms

4th International Workshop, WEA 2005
Santorini Island, Greece, May 2005
Proceedings

LNCS 3503

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3503

Sotiris E. Nikoletseas (Ed.)

Experimental
and Efficient
Algorithms

4th International Workshop, WEA 2005
Santorini Island, Greece, May 10-13, 2005
Proceedings

@ Springer

Volume Editor

Sotiris E. Nikoletseas

University of Patras and Computer Technology Institute (CTI)
61 Riga Fereou Street, 26221 Patras, Greece

E-mail: nikole@cti.gr

Library of Congress Control Number: 2005925473

CR Subject Classification (1998): F2.1-2, E.1, G.1-2,1.3.5,1.2.8

ISSN 0302-9743
ISBN-10 3-540-25920-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25920-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11427186 06/3142 543210

Preface

This proceedings volume contains the accepted papers and invited talks pre-
sented at the 4th International Workshop of Efficient and Experimental Algo-
rithms (WEA 2005), that was held May 10-13, on Santorini Island, Greece.

The WEA events are intended to be an international forum for research on
the design, analysis and especially the experimental implementation, evaluation
and engineering of algorithms, as well as on combinatorial optimization and its
applications.

The first three workshops in this series were held in Riga (2001), Monte Verita
(2003) and Rio de Janeiro (2004).

This volume contains 3 invited papers related to corresponding keynote talks:
by Prof. Christos Papadimitriou (University of California at Berkeley, USA),
Prof. David Bader (University of New Mexico, USA) and Prof. Celso Ribeiro
(University of Rio de Janeiro, Brazil).

This proceedings includes 54 papers (47 regular and 7 short), selected out
of a record number of 176 submissions. Each paper was reviewed by at least 2
Program Committee members, while many papers got 3 or 4 reviews. A total
number of 419 reviews were solicited, with the help of trusted external referees.

In addition to the 54 papers included in this volume, 6 papers were accepted
as poster presentations: these papers were published in a separate poster pro-
ceedings volume by CTI Press and a major publisher in Greece, “Ellinika Gram-
mata.” The presentation of these posters at the event was expected to create a
fruitful discussion on interesting ideas.

The 60 papers accepted to WEA 2005 demonstrate the international charac-
ter of the event: 33 authors are based in Germany, 20 in the USA, 13 in Italy, 12
in Greece, 9 each in Switzerland, France and Brazil, 6 each in Canada, Poland
and Belgium, 5 in the Netherlands, to list just the countries with the largest
participations.

Selected papers of WEA 2005 will be considered for a Special Issue of the
ACM Journal on Experimental Algorithmics (JEA, http://www.jea.acm.org/)
dedicated to the event.

We would like to thank all authors who submitted papers to WEA 2005. We
especially thank the distinguished invited speakers (whose participation honors
the event a lot), and the members of the Program Committee, as well as the
external referees and the Organizing Committee members.

We would like to thank the Ministry of National Education and Religious Af-
fairs of Greece for its financial support of the event. Also, we gratefully acknowl-
edge the support from the Research Academic Computer Technology Institute
(RACTI, Greece, http://www.cti.gr), and the European Union (EU) IST/FET
(Future and Emerging Technologies) R&D projects FLAGS (Foundational As-

VI Preface

pects of Global Computing Systems) and DELIS (Dynamically Evolving, Large-
Scale Information Systems).

I wish to personally acknowledge the great job of the WEA 2005 Publicity
Chair Dr. Ioannis Chatzigiannakis, and Athanasios Kinalis for maintaining the
Web page and processing this volume with efficiency and professionalism.

I am grateful to the WEA Steering Committee Chairs Prof. Jose Rolim and
Prof. Klaus Jansen for their trust and support.

Finally, we wish to thank Springer Lecture Notes in Computer Science (LNCS),
and in particular Alfred Hofmann and his team, for a very nice and efficient co-
operation in preparing this volume.

May 2005 Sotiris Nikoletseas

Organization

Program Committee Chair

Sotiris Nikoletseas

Program Committee

Edoardo Amaldi
Evripidis Bampis
David A. Bader
Cynthia Barnhart
Azzedine Boukerche
Gerth Brodal
Rainer Burkard
Giuseppe Di Battista
Rudolf Fleischer
Pierre Fraigniaud
Mark Goldberg
Juraj Hromkovic
Giuseppe Italiano
Christos Kaklamanis
Helen Karatza
Ludek Kucera

Shay Kutten
Catherine McGeoch
Simone Martins
Bernard Moret

Tan Munro

Sotiris Nikoletseas
Andrea Pietracaprina
Tomasz Radzik
Rajeev Raman
Mauricio Resende
Maria Serna

Paul Spirakis

Eric Taillard
Dorothea Wagner
Stefan Voss
Christos Zaroliagis

University of Patras and CTI, Greece

Politecnico di Milano, Italy

Université d’Evry, France

University of New Mexico, USA

MIT, USA

SITE, University of Ottawa, Canada
University of Aarhus, Denmark

Graz University of Technology, Austria
Universita’ degli Studi Roma Tre, Italy
Fudan University, Shanghai, China
CNRS, Université Paris-Sud, France
Rensselaer Polytechnic Institute, USA
ETH Zurich, Switzerland

Universita’ di Roma Tor Vergata, Italy
University of Patras and CTI, Greece
Aristotle University of Thessaloniki, Greece
Charles University, Czech Republic
Technion - Israel Institute of Technology, Israel
Ambherst College, USA

Universidade Federal Fluminense, Brazil
University of New Mexico, USA
University of Waterloo, Canada
University of Patras and CTI, Greece (Chair)
University of Padova, Italy

King’s College London, UK

University of Leicester, UK

AT&T Labs Research, USA

T.U. of Catalonia, Spain

University of Patras and CTI, Greece
EIVD, Switzerland

University of Karlsruhe, Germany
University of Hamburg, Germany
University of Patras and CTI, Greece

VIII Organization

Steering Committee Chairs

Klaus Jansen
Jose Rolim

University of Kiel, Germany
University of Geneva, Switzerland

Organizing Committee

Toannis Chatzigiannakis
Rozina Efstathiadou
Lena Gourdoupi
Athanasios Kinalis

Referees

Nazim Agoulmine
Roberto Aringhieri
Yossi Azar

Ricardo Baeza-Yates
Michael Baur

Amos Beimel

Pietro Belotti

Alberto Bertoldo
Mauro Bianco

Maria Blesa

Roderick Bloem
Christian Blum

Maria Cristina Boeres
Thomas Buchholz
Costas Busch

Sergiy Butenko
Roberto Wolfler Calvo
Antonio Capone
Ioannis Caragiannis
Massimiliano Caramia
Matteo Cesana
Toannis Chatzigiannakis
Yinong Chen

Francis Chin

Pier Francesco Cortese
Yves Crama

Cid de Souza

Josep Diaz

Tassos Dimitriou

CTI, Greece, (Co-chair)
CTI, Greece, (Co-chair)

CTI, Greece

University of Patras and CTI, Greece

Rolf Fagerberg

Carlo Fantozzi

Antonio Ferndndez

Irene Finocchi

Dimitris Fotakis

Joaquim Gabarré

Marco Gaertler

Giulia Galbiati

Clemente Galdi

Giovanni Gallo

Efstratios Gallopoulos

Fabrizio Grandoni

Peter Greistorfer

Nir Halman

Refael Hassin

Martin Holzer

Ja Hoogeveen

Stanislaw Jarecki

Jiang Jun

Sam Kamin

Howard Karloff

Dukwon Kim

Athanasios Kinalis

Sigrid Knust

Elisavet Konstantinou

Charalambos
Konstantopoulos

Spyros Kontogiannis

Dimitrios Koukopoulos

Joachim Kupke

Giovanni Lagorio

Giuseppe Lancia

Carlile Lavor

Helena Leityo

Zvi Lotker

Abilio Lucena

Francesco Maffioli

Malik Magdon-Ismail

Christos Makris

Federico Malucelli

Carlos Alberto
Martinhon

Constandinos
Mavromoustakis

Steffen Mecke

John Mitchell

Ivone Moh

Gabriel Moruz

Pablo Moscato

Matthias
Mueller-Hannemann

Maurizio Naldi

Filippo Neri

Sara Nicoloso

Gaia Nicosia

Mustapha Nourelfath

Carlos A.S. Oliveira

Mohamed Ould-Khaoua

Andrea Pacifici
Evi Papaioannou
Panos M. Pardalos
Paolo Penna

Pino Persiano
Enoch Peserico
Jordi Petit

Ugo Pietropaoli
Mustafa Pinar
Evaggelia Pitoura
Maurizio Pizzonia
Alexandre Plastino
Daniele Pretolani

Daniela Pucci de Farias
Naila Rahman
Massimo Rimondini
Isabel Rosseti
Harilaos Sandalidis
Haroldo Santos
Thomas Schank
Elad Schiller

Frank Schulz
Sebastian Seibert
Spyros Sioutas
Spiros Sirmakessis
Riste Skrekovski

Sponsoring Institutions

Organization X

Sténio Soares
Yannis Stamatiou
Maurizio Strangio
Tami Tamir
Leandros Tassiulas
Dimitrios M. Thilikos
Marco Trubian
Manolis Tsagarakis
George Tsaggouris
Gabriel Wainer
Renato Werneck
Igor Zwir

— Ministry of National Education and Religious Affairs of Greece

— EU-FET R&D project
Systems” (FLAGS)
EU-FET R&D project “Dynamically Evolving, Large-Scale Information
Systems” (DELIS)

Research Academic Computer Technology Institute (RACTI), Greece
“Foundational Aspects of Global Computing

Table of Contents

Invited Talks

Ta Hoawviow HaiCer The Interaction Between Algorithms and Game
7o 1
Christos H. Papadimitriou

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic
for Sequencing by Hybridization
FEraldo R. Fernandes, Celso C. Ribeiro.............cccvuiiiinnnn .. 4

High-Performance Algorithm Engineering for Large-Scale Graph
Problems and Computational Biology
David A. Bader 16

Contributed Regular Papers

The “Real” Approximation Factor of the MST Heuristic for the
Minimum Energy Broadcasting
Michele Flammini, Alfredo Navarra, Stephane Perennes 22

Implementing Minimum Cycle Basis Algorithms
Kurt Mehlhorn, Dimitrios Michail 0cciiiieen .. 32

Rounding to an Integral Program
Refael Hassin, Danny Segev, 44

Rectangle Covers Revisited Computationally
Laura Heinrich-Litan, Marco E. Libbecke 55

Don’t Compare Averages
Holger Bast, Ingmar Weber 67

Experimental Results for Stackelberg Scheduling Strategies
A.C. Kaporis, L.M. Kirousis, E.I. Politopoulou, P.G. Spirakis 77

An Improved Branch-and-Bound Algorithm for the Test Cover Problem
Torsten Fahle, Karsten Tiemann uiuuineanennan. 89

Degree-Based Treewidth Lower Bounds
Arie M.C.A. Koster, Thomas Wolle, Hans L. Bodlaender 101

XII Table of Contents

Inferring AS Relationships: Dead End or Lively Beginning?
Xenofontas Dimitropoulos, Dmitri Krioukov, Bradley Huffaker,

kc claffy, George Rileyo, 113
Acceleration of Shortest Path and Constrained Shortest Path
Computation

Ekkehard Kéhler, Rolf H. Mohring, Heiko Schilling 126

A General Buffer Scheme for the Windows Scheduling Problem
Amotz Bar-Noy, Jacob Christensen, Richard E. Ladner,
Tami Tamir 139

Implementation of Approximation Algorithms for the Multicast
Congestion Problem
Qiang Lu, Hu Zhango 152

Frequency Assignment and Multicoloring Powers of Square and
Triangular Meshes
Mustapha Kchikech, Olivier Togni.c. ... 165

From Static Code Distribution to More Shrinkage for the Multiterminal
Cut
Bram De Wachter, Alexandre Genon, Thierry Massart 177

Partitioning Graphs to Speed Up Dijkstra’s Algorithm
Rolf H. Mohring, Heiko Schilling, Birk Schiitz, Dorothea Wagner,
Thomas Willhalm i 189

Efficient Convergence to Pure Nash Equilibria in Weighted Network
Congestion Games
Panagiota N. Panagopoulou, Paul G. Spirakis 203

New Upper Bound Heuristics for Treewidth
Emgad H. Bachoore , Hans L. Bodlaender 216

Accelerating Vickrey Payment Computation in Combinatorial Auctions
for an Airline Alliance
Yvonne Bleischwitz, Georg Kliewer 228

Algorithm Engineering for Optimal Graph Bipartization
Falk Hiiffner ... o 240

Empirical Analysis of the Connectivity Threshold of Mobile Agents on
the Grid
Xavier PErez 253

Table of Contents XIII

Multiple-Winners Randomized Tournaments with Consensus for
Optimization Problems in Generic Metric Spaces

Domenico Cantone, Alfredo Ferro, Rosalba Giugno,

Giuseppe Lo Presti, Alfredo Pulvirenti 265

On Symbolic Scheduling Independent Tasks with Restricted Execution
Times
Daniel Sawitzki 277

A Simple Randomized k-Local Election Algorithm for Local
Computations
Rodrigue OSSAMYot 290

Generating and Radiocoloring Families of Perfect Graphs
M.I. Andreou, V.G. Papadopoulou, P.G. Spirakis, B. Theodorides,
A, XET0S oo 302

Efficient Implementation of Rank and Select Functions for Succinct

Representation
Dong Kyue Kim, Joong Chae Na, Ji Eun Kim, Kunsoo Park 315

Comparative Experiments with GRASP and Constraint Programming
for the Oil Well Drilling Problem
Romulo A. Pereira, Arnaldo V. Moura, Cid C. de Souza 328

A Framework for Probabilistic Numerical Evaluation of Sensor
Networks: A Case Study of a Localization Protocol
Pierre Leone, Paul Albuquerque, Christian Mazza, Jose Rolim 341

A Cut-Based Heuristic to Produce Almost Feasible Periodic Railway
Timetables
Christian Liebchen 354

GRASP with Path-Relinking for the Weighted Maximum Satisfiability
Problem

Paola Festa, Panos M. Pardalos, Leonidas S. Pitsoulis,

Mauricio G.C. ReSEnde 367

New Bit-Parallel Indel-Distance Algorithm
Heikki Hyyré, Yoan Pinzon, Ayumi Shinohara 380

Dynamic Application Placement Under Service and Memory Constraints
Tracy Kimbrel, Malgorzata Steinder, Maxim Sviridenko,
Asser Tantawioo e 391

X1V Table of Contents

Integrating Coordinated Checkpointing and Recovery Mechanisms into
DSM Synchronization Barriers
Azzedine Boukerche, Jeferson Koch,
Alba Cristina Magalhaes Alves de Melo 403

Synchronization Fault Cryptanalysis for Breaking A5/1
Marcin Gomutkiewicz, Mirostaw Kutylowski,
Heinrich Theodor Vierhaus, Pawel Wlaz 415

An Efficient Algorithm for -Approximate Matching with a-Bounded
Gaps in Musical Sequences
Domenico Cantone, Salvatore Cristofaro, Simone Faro 428

The Necessity of Timekeeping in Adversarial Queueing
Maik Weinardo 440

BDDs in a Branch and Cut Framework
Bernd Becker, Markus Behle, Friedrich Eisenbrand, Ralf Wimmer ... 452

Parallel Smith-Waterman Algorithm for Local DNA Comparison in a
Cluster of Workstations
Azzedine Boukerche, Alba Cristina Magalhaes Alves de Melo,
Mauricio Ayala-Rincon, Thomas M. Santana 464

Fast Algorithms for Weighted Bipartite Matching
Justus Schwartz, Angelika Steger, Andreas Weifsl 476

A Practical Minimal Perfect Hashing Method
Fabiano C. Botelho, Yoshiharu Kohayakawa, Nivio Ziviani 488

Efficient and Experimental Meta-heuristics for MAX-SAT Problems
Dalila Boughaci, Habiba Driascoo i .. 501

Experimental Evaluation of the Greedy and Random Algorithms for
Finding Independent Sets in Random Graphs
M. Goldberg, D. Hollinger, M. Magdon-Ismail 513

Local Clustering of Large Graphs by Approximate Fiedler Vectors
Pekka Orponen, Satu Elisa Schaeffer 524

Almost FPRAS for Lattice Models of Protein Folding
Anna Gambin, Damian Wojtowicz, 534

Vertex Cover Approximations: Experiments and Observations
Eyjolfur Asgeirsson, CUff Stein i 545

Table of Contents XV

GRASP with Path-Relinking for the Maximum Diversity Problem
Marcos R.Q. de Andrade, Paulo M.F. de Andrade,
Simone L. Martins, Alexandre Plastino 558

How to Splay for loglogN-Competitiveness
George F. Georgakopoulos, 570

Distilling Router Data Analysis for Faster and Simpler Dynamic

IP Lookup Algorithms
Filippo Geraci, Roberto GTosSSt.coouieiii .. 580

Contributed Short Papers

Optimal Competitive Online Ray Search with an Error-Prone Robot
Tom Kamphans, Elmar Langetepe. 593

An Empirical Study for Inversions-Sensitive Sorting Algorithms

Amr Elmasry, Abdelrahman Hammad 597
Approximation Algorithm for Chromatic Index and Edge-Coloring of
Multigraphs

Martin Kochol, Nada Krivondkovd, Silvia Smejovd 602

Finding, Counting and Listing All Triangles in Large Graphs, an
Experimental Study
Thomas Schank, Dorothea Wagner —...........ciiiiiien. . 606

Selecting the Roots of a Small System of Polynomial Equations by
Tolerance Based Matching
H. Bekker, E.P. Braad, B. Goldengorin 610

Developing Novel Statistical Bandwidths for Communication Networks
with Incomplete Information
Janos Levendovszky, Csego OT0SZo uiuiiie i 614

Dynamic Quality of Service Support in Virtual Private Networks

Yuziao Jia, Dimitrios Makrakis, Nicolas D. Georganas,
Dan ToNeSCU . ..o 618

Author Index 623

Ta IHawdia ITailer
The Interaction Between Algorithms and Game
Theory*

Christos H. Papadimitriou

UC Berkeley
christos@cs.berkeley.edu

The theories of algorithms and games were arguably born within a year of each
other, in the wake of two quite distinct breakthroughs by John von Neumann, in
the former case to investigate the great opportunities — as well as the ever mys-
terious obstacles — in attacking problems by computers, in the latter to model
and study rational selfish behavior in the context of interaction, competition and
cooperation. For more than half a century the two fields advanced as gloriously
as they did separately. There was, of course, a tradition of computational consid-
erations in equilibria initiated by Scarf [13], work on computing Nash and other
equilibria [6, 7], and reciprocal isolated works by algorithms researchers [8], as
well as two important points of contact between the two fields a propos the issues
of repeated games and bounded rationality [15] and learning in games [2]. But
the current intensive interaction and cross-fertilization between the two disci-
plines, and the creation of a solid and growing body of work at their interface,
must be seen as a direct consequence of the Internet.

By enabling rapid, well-informed interactions between selfish agents (as well
as by being itself the result of such interactions), and by creating new kinds
of markets (besides being one itself), the Internet challenged economists, and
especially game theorists, in new ways. At the other bank, computer scientists
were faced for the first time with a mysterious artifact that was not designed,
but had emerged in complex, unanticipated ways, and had to be approached
with the same puzzled humility with which other sciences approach the cell,
the universe, the brain, the market. Many of us turned to Game Theory for
enlightenment.

The new era of research in the interface between Algorithms and Game The-
ory is rich, active, exciting, and fantastically diverse. Still, one can discern in it
three important research directions: Algorithmic mechanism design, the price of
anarchy, and algorithms for equilibria.

If mainstream Game Theory models rational behavior in competitive set-
tings, Mechanism Design (or Reverse Game Theory, as it is sometimes called)
seeks to create games (auctions, for example) in which selfish players will be-
have in ways conforming to the designers objectives. This modern but already

* Research supported by NSF ITR grant CCR-0121555 and by a grant from Microsoft
Research. The title phrase, a Greek version of “games children play”, is a common
classroom example of a syntactic peculiarity (singular verb form with neutral plural
subject) in the Attic dialect of ancient Greek.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 1-3, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 C.H. Papadimitriou

mathematically well-developed branch of Game Theory received a shot in the
arm by the sudden influx of computational ideas, starting with the seminal pa-
per [9]. Computational Mechanism Design is a compelling research area for both
sides of the fence: Several important classical existence theorems in Mechanism
Design create games that are very complex, and can be informed and clarified
by our fields algorithmic and complexity-theoretic ideas; it presents a new genre
of interesting algorithmic problems; and the Internet is an attractive theater for
incentive-based design, including auction design.

Traditionally, distributed systems are designed centrally, presumably to op-
timize the sum total of the users objectives. The Internet exemplified another
possibility: A distributed system can also be designed by the interaction of its
users, each seeking to optimize his/her own objective. Selfish design has advan-
tages of architectural and political nature, while central design obviously results
in better overall performance. The question is, how much better? The price of
anarchy is precisely the ratio of the two. In game-theoretic terms, it is the ratio
of the sum of player payoffs in the worst (or best) equilibrium, divided by the
payoff sum of the strategy profile that maximizes this sum. This line of investiga-
tion was initiated in [5] and continued by [11] and many others. That economists
and game theorists had not been looking at this issue is surprising but not in-
explicable: In Economics central design is not an option; in Computer Science
it has been the default, a golden standard that invites comparisons. And com-
puter scientists have always thought in terms of ratios (in contrast, economists
favor the difference or “regret”): The approximation ratio of a hard optimization
problem [14] can be thought of as the price of complexity; the competitive ratio
in an on-line problem [4] is the price of ignorance, of lack of clairvoyance; in this
sense, the price of anarchy had been long in coming.

This sudden brush with Game Theory made computer scientists aware of
an open algorithmic problem: Is there a polynomial-time algorithm for finding a
mixed Nash equilibrium in a given game? Arguably, and together with factoring,
this is the most fundamental open problem in the boundary of P and NP: Even
the 2-player case is open — we recently learned [12] of certain exponential ex-
amples to the pivoting algorithm of Lemke and Howson [6]. Even though some
game theorists are still mystified by our fields interest efficient algorithms for
finding equilibria (a concept that is not explicitly computational), many more
are starting to understand that the algorithmic issue touches on the founda-
tions of Game Theory: An intractable equilibrium concept is a poor model and
predictor of player behavior. In the words of Kamal Jain “If your PC cannot
find it, then neither can the market”. Research in this area has been moving
towards games with many players [3, 1]), necessarily under some succinct repre-
sentation of the utilities (otherwise the input would need to be astronomically
large), recently culminating in a polynomial-time algorithm for computing cor-
related equilibria (a generalization of Nash equilibrium) in a very broad class of
multiplayer games [10].

Ta Howdio ITaiCer The Interaction Between Algorithms and Game Theory 3

References

10.

11.

12.
13.
14.
15.

. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash equi-

libria. STOC (2004)

Fudenberg, D., Levine, D. K.: Theory of Learning in Games. MIT Press, (1998)
Kearns, M., Littman, M., Singh, S.: Graphical Models for Game Theory. Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence, (2001) 253-260
Koutsoupias, E., Papadimitriou, C. H.: On the k-Server Conjecture. JACM 42(5),
(1995), 971-983

Koutsoupias, E., Papadimitriou, C. H.: Worst-case Equilibria. Proceedings of the
16th Annual Symposium on Theoretical Aspects of Computer Science, (1999)
Lemke, C. E., Howson, J. T.: Equilibrium Points of Bimatrix Games. Journal of
the Society of Industrial and Applied Mathematics, 12, (1964), 413-423
McKelvey, R., McLennan, A.: Computation of Equilibria in Finite Games. In
the Handbook of Computation Economics, Vol. I. Elsevier, Eds. Amman, H.,
Kendrick,D. A., Rust, J. (1996) 87-142

Megiddo, N.: Computational Complexity of the Game Theory Approach to Cost
Allocation on a Tree. Mathematics of Operations Research 3, (1978) 189-196
Nisan, N., Ronen, A.: Algorithmic Mechanism Design. Games and Economic Be-
havior, 35, (2001) 166-196

Papadimitriou, C.H.: Computing Correlated Equilibria in Multiplayer Games.
STOC (2005)

Roughgarden, T., Tardos, .: How Bad is Selfish Routing? JACM 49, 2, (2002)
236—259

Savani, R., von Stengel, B.: Long Lemke-Howson Paths. FOCS (2004)

Scarf, H.: The Computation of Economic Equilibria. Yale University Press, (1973)
Vazirani, V. V.: Approximation Algorithms. Springer-Verlag, (2001)
Papadimitriou, Christos H., Yannakakis, M.: On Complexity as Bounded Ratio-
nality (extended abstract). STOC (1994) 726-733

Using an Adaptive Memory Strategy to
Improve a Multistart Heuristic for
Sequencing by Hybridization

Eraldo R. Fernandes! and Celso C. Ribeiro?

! Department of Computer Science, Catholic University of Rio de Janeiro,
Rua Marqués de Sao Vicente 225, 22453-900 Rio de Janeiro, Brazil
eraldoluis@inf.puc-rio.br
2 Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Patria 156, 24210-240 Niteréi, Brazil
celso@ic.uff.br

Abstract. We describe a multistart heuristic using an adaptive memory
strategy for the problem of sequencing by hybridization. The memory-
based strategy is able to significantly improve the performance of mem-
oryless construction procedures, in terms of solution quality and pro-
cessing time. Computational results show that the new heuristic obtains
systematically better solutions than more involving and time consuming
techniques such as tabu search and genetic algorithms.

1 Problem Formulation

A DNA molecule may be viewed as a word in the alphabet {A,C,G, T} of nu-
cleotides. The problem of DNA sequencing consists in determining the sequence
of nucleotides that form a DNA molecule. There are currently two techniques for
sequencing medium-size molecules: gel electrophoresis and the chemical method.
The novel approach of sequencing by hybridization offers an interesting alterna-
tive to those above [8,9].

Sequencing by hybridization consists of two phases. The first phase is a bio-
chemical experiment involving a DNA array and the molecule to be sequenced,
i.e. the target sequence. A DNA array is a bidimensional grid in which each cell
contains a small sequence of nucleotides which is called a probe. The set of all
probes in a DNA array is denominated a library. Typically, a DNA array rep-
resented by C(¢) contains all possible probes of a fixed size ¢. After the array
has been generated, it is introduced into an environment with many copies of
the target sequence. During the experiment, a copy of the target sequence re-
acts with a probe if the latter is a subsequence of the former. This reaction is
called hybridization. At the end of the experiment, it is possible to determine
which probes of the array reacted with the target sequence. This set of probes
contains all sequences of size ¢ that appear in the target sequence and is called
the spectrum. An illustration of the hybridization experiment involving the tar-

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 4-15, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic 5

AAAA | AAAC | AAAG | AAAT | AACA | AACC | AACG | AACT | AAGA | AAGC | AAGG | AAGT | AATA | AATC | AATG | AATT
ACAA | ACAC | ACAG | ACAT | ACCA | ACCC | ACCG | ACCT | ACGA | ACGC | ACGG | ACGT | ACTA | ACTC | ACTG | ACTT
AGAA | AGAC | AGAG | AGAT | AGCA | AGCC | AGCG | AGCT | AGGA | AGGC | AGGG | AGGT | AGTA | AGTC | AGTG | AGTT
ATAA | ATAC | ATAG | ATAT | ATCA | ATGC | ATCG | ATCT | ATGA | ATGC | ATGG | ATGT | ATTA | ATTC | ATTG | ATTT
CAAA | CAAC | CAAG | CAAT | CACA | CACC | CACG | CACT | CAGA | CAGC | CAGG | CAGT | CATA | CATC | CATG | CATT
CCAA | CCAC | CCAG | CCAT | CCCA | CCCC | CCCG | CCCT | CCGA | CCGC | CCGG | CCGT | CCTA | CCTC | CCTG | CCTT
CGAA | CGAC | CGAG | CGAT | CGCA | CGCC | CGCG | CGCT | CGGA | CGGC | CGGG | CGGT | CGTA | CGTC | CGTG | CGTT
CTAA | CTAC | CTAG | CTAT | CTCA | CTCC | CTCG | CTCT | CTGA | CTGC | CTGG | CTGT | CTTA | CTTC | CTTG | CTTT
GAAA | GAAC | GAAG | GAAT | GACA | GACC | GACG | GACT | GAGA | GAGC | GAGG | GAGT | GATA | GATC | GATG | GATT
GCAA | GCAC | GCAG | GCAT | GCCA | GCCC | GCCG | GCCT | GCGA | GCGC | GCGG | GCGT | GCTA | GCTC | GCTG | GCTT
GGAA | GGAC | GGAG | GGAT | GGCA | GGCC | GGCG | GGCT | GGGA | GGGC | GGGG | GGGT | GGTA | GGTC | GGTG | GGTT
GTAA | GTAC | GTAG | GTAT | GTCA | GTCC | GTCG | GTCT | GTGA | GTGC | GTGG | GTGT | GTTA | GTTC | GTTG | GTTT
TAAA | TAAC | TAAG | TAAT | TACA | TACC | TACG | TACT | TAGA | TAGC | TAGG | TAGT | TATA | TATC | TATG | TATT

Fig. 1. Hybridization experiment involving the target sequence ATAGGCAGGA and
all probes of size £ = 4

get sequence ATAGGCAGGA and C(4) is depicted in Figure 1. The highlighted
cells are those corresponding to the spectrum.

The second phase of the sequencing by hybridization technique consists in
using the spectrum to determine the target sequence. The latter may be viewed
as a sequence formed by all n — ¢ + 1 probes in the spectrum, in which the last
£—1 letters of each probe coincide with the first £—1 letters of the next. However,
two types of errors may be introduced along the hybridization experiment. False
positives are probes that appear in the spectrum, but not in the target sequence.
False negatives are probes that should appear in the spectrum, but do not. A
particular case of false negatives is due to probes that appear multiple times
in the target sequence, since the hybridization experiment is not able to detect
the number of repetitions of the same probe. Therefore, a probe appearing m
times in the target sequence will generate m — 1 false negatives. The problem of
sequencing by hybridization (SBH) is formulated as follows: given the spectrum
S, the probe length ¢, the size n and the first probe sy of the target sequence,
find a sequence with length smaller than or equal to n containing a maximum
number of probes. The maximization of the number of probes of the spectrum
corresponds to the minimization of the number of errors in the solution. Errors
in the spectrum make the reconstruction problem NP-hard [5].

An instance of SBH may be represented by a directed weighted graph G(V, E),
where V' = S is the set of nodes and E = {(u, v) | u,v € S} is the set of arcs. The
weight of the arc (u, v) is given by w(u,v) = £—o(u, v), where o(u, v) is the size of
the largest sequence that is both a suffix of u and a prefix of v. The value o(u, v) is
the superposition between probes u and v. A feasible solution to SBH is an acyclic
path in G emanating from node sy and with total weight smaller than or equal to
n — £. This path may be represented by an ordered node list a =< ay,...,ar >,
with a; € S,4=1,...,k. Let S(a) = {a1,...,ax} be the set of nodes visited by
a path a and denote by |a| = |S(a)| the number of nodes in this path. The latter
is a feasible solution to SBH if and only if a1 = sg, a; # a; for all a;,a; € S(a),
and w(a) < n — ¢, where w(a) = 3,1 -1 w(an,ant1) is the sum of the

6 E.R. Fernandes and C.C. Ribeiro

(a) No errors in the spectrum (b) Errors in the spectrum

Fig. 2. Graphs and solutions for the target sequence ATAGGCAGGA with the probe
size ¢ = 4: (a) no errors in the spectrum, (b) one false positive error (GGCG) and
one false negative error (GGCA) in the spectrum (not all arcs are represented in the

graph)

weights of all arcs in the path. Therefore, SBH consists in finding a maximum
cardinality path satisfying the above constraints.

The graph associated with the experiment depicted in Figure 1 is given in
Figure 2 (a). The solution is a path visiting all nodes and using only unit weight
arcs, since there are no errors in the spectrum. The example in Figure 2 (b)
depicts a situation in which probe GGCA was erroneously replaced by probe
GGCQG, introducing one false positive and one false negative error. The new
optimal solution does not visit all nodes (due to the false positive) and uses one
arc with weight equal to 2 (due to the false negative).

Heuristics for SBH, handling both false positive and false negative errors,
were proposed in [3,4,6]. We propose in the next section a new memory-based
multistart heuristic for SBH, also handling both false positive and false negative
errors. The algorithm is based on an adaptive memory strategy using a set
of elite solutions visited along the search. Computational results illustrating
the effectiveness of the new memory-based heuristic are reported in Section 3.
Concluding remarks are made in the final section.

2 Memory-Based Multistart Heuristic

The memory-based multistart heuristic builds multiple solutions using a greedy
randomized algorithm. The best solution found is returned by the heuristic. An
adaptive memory structure stores the best elite solutions found along the search,
which are used within an intensification strategy [7].

The memory is formed by a pool @ that stores ¢ elite solutions found along
the search. It is initialized with ¢ null solutions with zero probes each. A new
solution a is a candidate to be inserted into the pool if |a| > ming ¢ |a’|. This
solution replaces the worst in the pool if |a| > maxgeq |a’| (i-e., a is better
than the best solution currently in the pool) or if ming, ¢g dist(a,a’) > d, where
d is a parameter of the algorithm and dist(a,a’) is the number of probes with

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic 7

different successors in a and a’ (i.e., a is better than the worst solution cur-
rently in the pool and sufficiently different from every other solution in the
pool).

The greedy randomized algorithm iteratively extends a path a initially formed
exclusively by probe sg. At each iteration, a new probe is appended at the end
of the path a. This probe is randomly selected from the restricted candidate list
R={veS\S(a)|o(u,v) > (1—a) maxes s@)o(u,t) and w(a) + w(u,v) <
n — £}, where u is the last probe in a and « € [0, 1] is a parameter. The list R
contains probes with a predefined minimum superposition with the last probe
in a, restricting the search to more promising regions of the solution space. The
construction of a solution stops when R turns up to be empty.

The probability p(u,v) of selecting a probe v from the restricted candidate
list R to be inserted after the last probe u in the path a is computed using the
superposition between probes u and v, and the frequency in which the arc (u, v)
appears in the set @ of elite solutions. We define e(u,v) = A - z(u,v) + y(u, v),
where x(u,v) = mingeg\ g0y {w(u,t)/w(u,v)} is higher when the superposition
between probes u and v is larger, y(u, v) = >_ 1 cq|(u,veqr 10"/ maxaeq |a'[} is
larger for arcs (u, v) appearing more often in the elite set @), and X is a parameter
used to balance the two criteria. Then, the probability of selecting a probe v to
be inserted after the last probe u in the path a is given by

_e(w,v)
Pl) = et

The value of A should be high in the beginning of the algorithm, when the
information in the memory is still weak. The value of a should be small in

procedure MultistartHeuristic(S, so, £, n)

1. Initialize o, w, a, q, d, Q;

2. a" < null;

3. fori=1to N do

4. Set a «— (s0);

5. Build the restricted candidate list R;

6. while R # () do

7. Compute the selection probability for each probe v € R;
8. Randomly select a probe v € R;

9. Extend the current solution a by appending v to its end;
10. Update the restricted candidate list R;

11. end;

12. Use a to update the pool of elite solutions Q;

13. if |a| > |a”| then set a* «— q;

14. end;

15. return a*;

end;

Fig. 3. Memory-based multistart heuristic

8 E.R. Fernandes and C.C. Ribeiro

the beginning, to allow for the construction of good solutions by the greedy
randomized heuristic and so as to quickly enrich the memory. The value of «
is progressively increased along the algorithm when the weight A given to the
superposition information decreases, to increase the diversity of the solutions in
the list R.

We sketch in Figure 3 the pseudo-code with the main steps of the memory-
based multistart heuristic, in which N iterations are performed.

3 Numerical Results

The memory-based multistart heuristic was implemented in C++, using version
3.3.2 of the GNU compiler. The rand function was used for the generation of
pseudo-random numbers. The computational experiments were performed on a
2.4 GHz Pentium IV machine with 512 MB of RAM.

Two sets of test instances have been generated from human and random
DNA sequences. Instances in group A were built from 40 human DNA sequences
obtained from GenBank [2], as described in [4]. Prefixes of size 109, 209, 309, 409,
and 509 were extracted from these sequences. For each prefix, a hybridization
experiment with the array C(10) was simulated, producing spectra with 100,
200, 300, 400, and 500 probes. Next, false negatives were simulated by randomly
removing 20% of the probes in each spectrum. False positives were simulated
by inserting 20% of new probes in each spectrum. Overall, we have generated
200 instances in this group, 40 of each size. Instances in group R were generated
from 100 random DNA sequences with prefixes of size 100, 200, ..., and 1000.
Once again, 20% false negatives and 20% false positives have been generated.
There are 100 instances of each size in this group, in a total of 1000 instances.

Preliminary computational experiments have been performed to tune the
main parameters of the algorithm. The following settings were selected: N = 10n
(number of iterations performed by the multistart heuristic), ¢ = n/80 (size of
the pool of elite solutions), and d = 2 (minimum difference for a solution to
be accepted in the pool). Parameters o and A used by the greedy randomized
construction heuristic are self-tuned. Iterations of this heuristic are grouped in
20 blocks. Each block performs n/2 iterations. In the first block, A = 100g. In
the second block, A = 10g. The value of A is reduced by g at each new block,
until it is made equal to zero. The value of « is initialized according to Tables 1
and 2, and increased by 0.1 after every five blocks of n/2 iterations, until it is
made equal to one.

Two versions of the MultistartHeuristic algorithm described in Figure 3
were implemented: MS is a purely multistart procedure that does not make use of
memory, while MS+Mem fully exploits the adaptive memory strategy described

Table 1. Initial values of « for the instances in group R

n | 100 200 300 400 500 600 700 800 900 1000
a |05 03 02 01 01 00 00 0.0 00 0.0

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic 9

Table 2. Initial values of « for the instances in group A

n [109 209 309 409 509
a |05 03 02 01 0.1

in the previous section. To evaluate the quality of the solutions produced by the
heuristics, we performed the alignment of their solutions with the corresponding
target sequences, as in [4]. The similarity between two sequences is defined as the
fraction (in percent) of symbols that coincide in their alignment. A similarity
of 100% means that the two sequences are identical. Average similarities and
average computation times in seconds over all test instances in group R for
both heuristics are displayed in Figure 4. These results clearly illustrate the

100 %=

95 |-

90

80 [

Average similarity (%)

75 |

100 200 300 400 500 600 700 800 900 1000
Sequence length (n)

(a) Similarities

Average time (s)

8| A
6 X 1
sl x]
X
2 X g
e
,,,,, e
=
0 et i
100 200 300 400 500 600 700 800 900 1000

Sequence length (n)

(b) Computation times in seconds

Fig. 4. Computational results obtained by heuristics MS+Mem and MS for the in-
stances in group R

10 E.R. Fernandes and C.C. Ribeiro

800

780 e R

760 -]

Number of probes

680 - 1

660 - —

640 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

(a) Best solutions along 10000 iterations

780

760 | 4

700 1

Number of probes

660 1

640 1 1 1 1 1 1 1 |
1 2 3 4 5 6 7 8
Time (s)

(b) Best solutions along 8.7 seconds of processing time

Fig. 5. Probes in the best solutions found by heuristics MS and MS+Mem for an
instance with n = 1000 from group R

contribution of the adaptive memory strategy to improve the performance of
the purely multistart heuristic.

We have performed another experiment to further evaluate the influence of
the adaptive memory strategy on the multistart heuristic. We illustrate our
findings for one specific instance with size n = 1000 from group R. Figure 5
(a) displays the number of probes in the best solution obtained by each heuris-
tic along 10000 iterations. We notice that the best solution already produced
by MS+Mem until a given iteration is consistently better than that obtained
by MS, in particular after a large number of iterations have been performed.
Figure 5 (b) depicts the same results along 8.7 seconds of processing time.
The purely multistart heuristic seems to freeze and prematurely converge to
a local minimum very quickly. The use of the adaptive memory strategy leads

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic 11

the heuristic to explore other regions of the solution space and to find better
solutions.

To give further evidence concerning the performance of the two heuristics,
we used the methodology proposed by Aiex et al. [1] to assess experimentally
the behavior of randomized algorithms. This approach is based on plots showing
empirical distributions of the random variable time to target solution value. To
plot the empirical distribution, we select a test instance, fix a target solution
value, and run algorithms MS and MS+Mem 100 times each, recording the
running time when a solution with cost at least as good as the target value
is found. For each algorithm, we associate with the i-th sorted running time
t; a probability p; = (i — %)/100 and plot the points z; = (¢;,p;), for i =
1,...,100.

Since the relative performance of the two heuristics is quite similar over
all test instances, we selected one particular instance of size n = 500 from
group R and used its optimal value as the target. The computational results
are displayed in Figure 6. This figure shows that the heuristic MS+Mem us-
ing the adaptive memory strategy is capable of finding target solution values
with higher probability or in smaller computation times than the pure mul-
tistart heuristic MS, illustrating once again the contribution of the adaptive
memory strategy. These results also show that the heuristic MS+Mem is more
robust.

0.9

0.8

0.6

0.5

Probability

0.4
0.3
0.2

01
MS +
MS+Mem x

Time (s)

Fig. 6. Empirical probability distributions of time to target solution value for heuristics
MS+Mem and MS for an instance of size n = 500 from group R

We have also considered the behavior of the heuristic MS+Mem when the
number of errors and the size of the probes vary. The algorithm was run on
randomly generated instances as those in group R, for different rates of false
negative and false positive errors: 0%, 10%, 20%, and 30%. Similarly, the

12 E.R. Fernandes and C.C. Ribeiro

100

95

90

85

80

75

Average similarity (%)

70

65

60

55

| —+— 0% of errors
--%-=- 10% of errors
---@--- 20% of errors
- 3‘0% of errors

100 200 300

100

95

90

85

80

75

Average similarity (%)

70

65

60

400 500

600 700
Sequence length (n)

(a) Rates of errors: 0%, 10%, 20%, and 30%

800

900

1000

=)
3
N
N
=3

-

|
own
i

N

300

400 500

600 700

Sequence length (n)

(b) Probe sizes: £ =17,8,9,10, 11

Fig. 7. Results obtained by the heuristic MS+Mem for instances with different rates
of errors (a) and probe sizes (b)

Table 3. Average similarities for the instances in group A

n
Algorithm| 109 209 309 409 509
TS 98.6 941 89.6 88,5 80.7
ow 994 952 957 921 90.1
GA 98.3 979 99.1 981 93.5
MS+Mem| 100.0 100.0 99.2 99.4 99.5

algorithm was also run on randomly generated instances as those in group R
with different probe sizes ¢ = 7,8,9,10,11. Numerical results are displayed in

Figure 7.

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic 13

Table 4. Average computation times in seconds for the instances in group A

Algorithm| 109 209 309 409 509
TS <1.0 5.0 14.0 28.0 51.0
oW <1.0 <1.0 <1.0 <1.0 <1.0
GA 0.1 0.3 0.9 1.5 2.1

MS+Mem 0.1 0.4 0.8 1.6 3.0

Table 5. Target sequences exactly reconstructed for the instances in group A

n
Algorithm| 109 209 309 409 509
TS 28 23 17 10 10
ow 28 20 21 13 14
GA 37 30 37 30 28
MS+Mem 40 40 39 39 39

The memory-based multistart heuristic MS+Mem was compared with the
tabu search algorithm (TS) in [4], the overlapping windows heuristic (OW) in [3],
and the genetic algorithm (GA) in [6]. The numerical results are summarized in
Tables 3 and 4, which depict the average similarities and the average computation
times in seconds observed for each algorithm over the 40 instances with the
same size in group A. The heuristic MS+Mem found much better solutions than
the others. The alignments observed for the solutions produced by MS+Mem
are systematically higher. The new heuristic MS+Mem is faster than TS and
competitive with GA (the results displayed for the overlapping windows heuristic
were obtained on a CRAY T3E-900 supercomputer).

Further comparative results for the four algorithms are given in Table 5, in
which we give the number of target sequences exactly reconstructed for each
algorithm over the 40 instances with the same size in group A. The heuristic
MS+Mem was able to reconstruct the 40 original sequences of size 109 and 209,
and 39 out of the 40 instances of sizes 309, 409, and 509, corresponding to a
total of 197 out of the 200 test instances in group A. The overlapping windows
and the tabu search heuristics found, respectively, only 96 and 88 out of the 200
original sequences.

We also compared the new heuristic MS+Mem with the genetic algorithm for
the instances in group R. Average similarities and average computation times in
seconds are shown in Figure 8. Table 6 depicts the number of target sequences
exactly reconstructed by MS+Mem and the genetic algorithm over the 100 in-
stances of each size in group R. Also for the instances in this group, the new
heuristic outperformed the genetic algorithm both in terms of solution quality
and computation times.

14 E.R. Fernandes and C.C. Ribeiro

100 e
95
90
85 -
g
S 8or
3
E 75}
@
°
)
o \,
g 70F \]
g \
< \,
65 - ,
60 - X ,
55 - y
—+— MS+Mem
=% GA
50 ;
100 200 300 400 500 600 700 800 900 1000
Sequence length (n)
(a) Similarities
300 ,
—— MS+Mem
—x— GA
X
250 B
200 —
z
°
£
o 150]
)
8 \
° A
g \
< .
100 | / .]
r" x
X
50 b g
),)(
100 200 300 400 500 600 700 800 900 1000

Sequence length (n)

(b) Computation times in seconds

Fig. 8. Computational results obtained by the heuristic MS+Mem and the genetic
algorithm (GA) for the instances in group R

Table 6. Target sequences exactly reconstructed for the instances in group R

n

Algorithm| 100 200 300 400 500 600 700 800 900 1000
GA 70 61 55 37 23 11 9 3 1 2

MS+Mem| 79 74 8 72 58 52 24 14 11 3

4 Concluding Remarks

We proposed a multistart heuristic for the problem of sequencing by hybridiza-
tion, based on an intensification strategy that makes use of an adaptive memory.
The adaptive memory strategy makes use of a set of elite solutions found along

Using an Adaptive Memory Strategy to Improve a Multistart Heuristic 15

the search. The choice of the new element to be inserted into the partial solution
at each iteration of a greedy randomized construction procedure is based not
only on greedy information, but also on frequency information extracted from
the memory.

Computational results on test instances generated from human and random
DNA sequences have shown that the memory-based strategy is able to signifi-
cantly improve the performance of a memoryless construction procedure purely
based on greedy choices. The memory-based multistart heuristic obtained better
results than more involving and time consuming techniques such as tabu search
and genetic algorithms, both in terms of solution quality and computation times.

The use of adaptive memory structures that are able to store information
about the relative positions of the tasks in elite solutions seems to be particularly
suited to scheduling problems in which blocks formed by the same tasks in the
same order often appear in the best solutions.

References

1. R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution
time in GRASP: An experimental investigation. Journal of Heuristics, 8:343-373,
2002.

2. D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and D.L. Wheeler. Gen-
bank: Update. Nucleic Acids Research, 32:D23-D26, 2004.

3. J. Blazewicz, P. Formanowicz, F. Guinand, and M. Kasprzak. A heuristic managing
errors for DNA sequencing. Bioinformatics, 18:652-660, 2002.

4. J. Blazewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and T. Weglarz.
Tabu search for DNA sequencing with false negatives and false positives. European
Journal of Operational Research, 125:257-265, 2000.

5. J. Blazewicz and M. Kasprzak. Complexity of DNA sequencing by hybridization.
Theoretical Computer Science, 290:1459-1473, 2003.

6. T.A. Endo. Probabilistic nucleotide assembling method for sequencing by hybridiza-
tion. Bioinformatics, 20:2181-2188, 2004.

7. C. Fleurent and F. Glover. Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory. INFORMS Journal on Com-
puting, 11:198-204, 1999.

8. P.A. Pevzner. Computational molecular biology: An algorithmic approach. MIT
Press, 2000.

9. M.S. Waterman. Introduction to computational biology: Maps, sequences and
genomes. Chapman & Hall, 1995.

High-Performance Algorithm Engineering for
Large-Scale Graph Problems and Computational
Biology

David A. Bader*

Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM 87131
dbader@ece.unm.edu

Abstract. Many large-scale optimization problems rely on graph the-
oretic solutions; yet high-performance computing has traditionally fo-
cused on regular applications with high degrees of locality. We describe
our novel methodology for designing and implementing irregular paral-
lel algorithms that attain significant performance on high-end computer
systems. Our results for several fundamental graph theory problems are
the first ever to achieve parallel speedups. Specifically, we have demon-
strated for the first time that significant parallel speedups are attainable
for arbitrary instances of a variety of graph problems and are developing
a library of fundamental routines for discrete optimization (especially in
computational biology) on shared-memory systems.

Phylogenies derived from gene order data may prove crucial in an-
swering some fundamental questions in biomolecular evolution. High-
performance algorithm engineering offers a battery of tools that can re-
duce, sometimes spectacularly, the running time of existing approaches.
We discuss one such such application, GRAPPA, that demonstrated over
a billion-fold speedup in running time (on a variety of real and simulated
datasets), by combining low-level algorithmic improvements, cache-aware
programming, careful performance tuning, and massive parallelism. We
show how these techniques are directly applicable to a large variety of
problems in computational biology.

1 Experimental Parallel Algorithms

We discuss our design and implementation of theoretically-efficient parallel algo-
rithms for combinatorial (irregular) problems that deliver significant speedups
on typical configurations of SMPs and SMP clusters and scale gracefully with the
number of processors. Problems in genomics, bioinformatics, and computational
ecology provide the focus for this research. Our source code is freely-available
under the GNU General Public License (GPL) from our web site.

* This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR
ACI-00-81404, ITR EIA-01-21377,Biocomplexity DEB-01-20709, and ITR EF/BIO
03-31654; and DARPA contract NBCH30390004.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 16-21, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

High-Performance Algorithm Engineering 17

1.1 Theoretically- and Practically-Efficient Portable Parallel
Algorithms for Irregular Problems

Our research has designed parallel algorithms and produced implementations
for primitives and kernels for important operations such as prefix-sum, pointer-
jumping, symmetry breaking, and list ranking; for combinatorial problems such
as sorting and selection; for parallel graph theoretic algorithms such as spanning
tree, minimum spanning tree, graph decomposition, and tree contraction; and
for computational genomics such as maximum parsimony (see [1,2,3,4,5,6,7,8,
9,10,11,12]). Several of these classic graph theoretic problems are notoriously
challenging to solve in parallel due to the fine-grained global accesses needed
for the sparse and irregular data structures. We have demonstrated theoretically
and practically fast implementations that achieve parallel speedup for the first
time when compared with the best sequential implementation on commercially
available platforms.

2 Combinatorial Algorithms for Computational Biology

In the 50 years since the discovery of the structure of DNA, and with new tech-
niques for sequencing the entire genome of organisms, biology is rapidly moving
towards a data-intensive, computational science. Many of the newly faced chal-
lenges require high-performance computing, either due to the massive-parallelism
required by the problem, or the difficult optimization problems that are often
combinatoric and NP-hard. Unlike the traditional uses of supercomputers for reg-
ular, numerical computing, many problems in biology are irregular in structure,
significantly more challenging to parallelize, and integer-based using abstract
data structures.

Biologists are in search of biomolecular sequence data, for its comparison
with other genomes, and because its structure determines function and leads to
the understanding of biochemical pathways, disease prevention and cure, and
the mechanisms of life itself. Computational biology has been aided by recent
advances in both technology and algorithms; for instance, the ability to sequence
short contiguous strings of DNA and from these reconstruct the whole genome
and the proliferation of high-speed microarray, gene, and protein chips for the
study of gene expression and function determination. These high-throughput
techniques have led to an exponential growth of available genomic data.

Algorithms for solving problems from computational biology often require
parallel processing techniques due to the data- and compute-intensive nature of
the computations. Many problems use polynomial time algorithms (e.g., all-to-
all comparisons) but have long running times due to the large number of items
in the input; for example, the assembly of an entire genome or the all-to-all
comparison of gene sequence data. Other problems are compute-intensive due to
their inherent algorithmic complexity, such as protein folding and reconstructing
evolutionary histories from molecular data, that are known to be NP-hard (or
harder) and often require approximations that are also complex.

18 D.A. Bader

3 Phylogeny Reconstruction

A phylogeny is a representation of the evolutionary history of a collection of
organisms or genes (known as taxa). The basic assumption of process necessary
to phylogenetic reconstruction is repeated divergence within species or genes.
A phylogenetic reconstruction is usually depicted as a tree, in which modern
taxa are depicted at the leaves and ancestral taxa occupy internal nodes, with
the edges of the tree denoting evolutionary relationships among the taxa. Re-
constructing phylogenies is a major component of modern research programs in
biology and medicine (as well as linguistics). Naturally, scientists are interested
in phylogenies for the sake of knowledge, but such analyses also have many uses
in applied research and in the commercial arena.

Existing phylogenetic reconstruction techniques suffer from serious problems
of running time (or, when fast, of accuracy). The problem is particularly serious
for large data sets: even though data sets comprised of sequence from a single
gene continue to pose challenges (e.g., some analyses are still running after two
years of computation on medium-sized clusters), using whole-genome data (such
as gene content and gene order) gives rise to even more formidable computational
problems, particularly in data sets with large numbers of genes and highly-
rearranged genomes.

To date, almost every model of speciation and genomic evolution used in phy-
logenetic reconstruction has given rise to NP-hard optimization problems. Three
major classes of methods are in common use. Heuristics (a natural consequence
of the NP-hardness of the problems) run quickly, but may offer no quality guar-
antees and may not even have a well-defined optimization criterion, such as the
popular neighbor-joining heuristic [13]. Optimization based on the criterion of
mazimum parsimony (MP) [14] seeks the phylogeny with the least total amount
of change needed to explain modern data. Finally, optimization based on the
criterion of mazimum likelihood (ML) [15] secks the phylogeny that is the most
likely to have given rise to the modern data.

Heuristics are fast and often rival the optimization methods in terms of accu-
racy, at least on datasets of moderate size. Parsimony-based methods may take
exponential time, but, at least for DNA and amino acid data, can often be run to
completion on datasets of moderate size. Methods based on maximum likelihood
are very slow (the point estimation problem alone appears intractable) and thus
restricted to very small instances, and also require many more assumptions than
parsimony-based methods, but appear capable of outperforming the others in
terms of the quality of solutions when these assumptions are met. Both MP-
and ML-based analyses are often run with various heuristics to ensure timely
termination of the computation, with mostly unquantified effects on the quality
of the answers returned.

Thus there is ample scope for the application of high-performance algorithm
engineering in the area. As in all scientific computing areas, biologists want to
study a particular dataset and are willing to spend months and even years in the
process: accurate branch prediction is the main goal. However, since all exact
algorithms scale exponentially (or worse, in the case of ML approaches) with the

High-Performance Algorithm Engineering 19

number of taxa, speed remains a crucial parameter—otherwise few datasets of
more than a few dozen taxa could ever be analyzed.

As an illustration, we briefly discuss our experience with a high-performance
software suite, GRAPPA (Genome Rearrangement Analysis through Parsimony
and other Phylogenetic Algorithms) that we developed, GRAPPA extends Sankoff
and Blanchette’s breakpoint phylogeny algorithm [16] into the more biologically-
meaningful inversion phylogeny and provides a highly-optimized code that can
make use of distributed- and shared-memory parallel systems (see [17,18, 19,
20,21,22] for details). In [23] we give the first linear-time algorithm and fast
implementation for computing inversion distance between two signed permuta-
tions. We ran GRAPPA on a 512-processor IBM Linux cluster with Myrinet
and obtained a 512-fold speed-up (linear speedup with respect to the number
of processors): a complete breakpoint analysis (with the more demanding in-
version distance used in lieu of breakpoint distance) for the 13 genomes in the
Campanulaceae data set ran in less than 1.5 hours in an October 2000 run, for
a million-fold speedup over the original implementation. Our latest version fea-
tures significantly improved bounds and new distance correction methods and, on
the same dataset, exhibits a speedup factor of over one billion. We achieved this
speedup through a combination of parallelism and high-performance algorithm
engineering. Although such spectacular speedups will not always be realized, we
suggest that many algorithmic approaches now in use in the biological, phar-
maceutical, and medical communities can benefit tremendously from such an
application of high-performance techniques and platforms.

This example indicates the potential of applying high-performance algorithm
engineering techniques to applications in computational biology, especially in
areas that involve complex optimizations: our reimplementation did not require
new algorithms or entirely new techniques, yet achieved gains that turned an
impractical approach into a usable one.

References

1. Bader, D., Illendula, A., Moret, B.M., Weisse-Bernstein, N.: Using PRAM al-
gorithms on a uniform-memory-access shared-memory architecture. In Brodal,
G., Frigioni, D., Marchetti-Spaccamela, A., eds.: Proc. 5th Int’l Workshop on Al-
gorithm Engineering (WAE 2001). Volume 2141 of Lecture Notes in Computer
Science., Arhus, Denmark, Springer-Verlag (2001) 129-144

2. Bader, D., Moret, B., Sanders, P.: Algorithm engineering for parallel computation.
In Fleischer, R., Meineche-Schmidt, E., Moret, B., eds.: Experimental Algorith-
mics. Volume 2547 of Lecture Notes in Computer Science. Springer-Verlag (2002)
1-23

3. Bader, D., Sreshta, S., Weisse-Bernstein, N.: Evaluating arithmetic expressions
using tree contraction: A fast and scalable parallel implementation for symmetric
multiprocessors (SMPs). In Sahni, S., Prasanna, V., Shukla, U., eds.: Proc. 9th
Int’l Conf. on High Performance Computing (HiPC 2002). Volume 2552 of Lecture
Notes in Computer Science., Bangalore, India, Springer-Verlag (2002) 63-75

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D.A. Bader

Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric
multiprocessors (SMPs). In: Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS 2004), Santa Fe, NM (2004)

Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric
multiprocessors (SMPs). Journal of Parallel and Distributed Computing (2004) to
appear.

Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the min-
imum spanning forest of sparse graphs. In: Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS 2004), Santa Fe, NM (2004)

Cong, G., Bader, D.A.: The Euler tour technique and parallel rooted spanning
tree. In: Proc. Int’l Conf. on Parallel Processing (ICPP), Montreal, Canada (2004)
448-457

Su, M.F., El-Kady, I., Bader, D.A., Lin, S.Y.: A novel FDTD application featuring
OpenMP-MPI hybrid parallelization. In: Proc. Int’l Conf. on Parallel Processing
(ICPP), Montreal, Canada (2004) 373-379

Bader, D., Madduri, K.: A parallel state assignment algorithm for finite state
machines. In: Proc. 11th Int’l Conf. on High Performance Computing (HiPC 2004),
Bangalore, India, Springer-Verlag (2004)

Cong, G., Bader, D.: Lock-free parallel algorithms: An experimental study. In:
Proc. 11th Int’l Conf. on High Performance Computing (HiPC 2004), Bangalore,
India, Springer-Verlag (2004)

Cong, G., Bader, D.: An experimental study of parallel biconnected components
algorithms on symmetric multiprocessors (SMPs). Technical report, Electrical and
Computer Engineering Department, The University of New Mexico, Albuquerque,
NM (2004) Submitted for publication.

Bader, D., Cong, G., Feo, J.: A comparison of the performance of list ranking
and connected components algorithms on SMP and MTA shared-memory sys-
tems. Technical report, Electrical and Computer Engineering Department, The
University of New Mexico, Albuquerque, NM (2004) Submitted for publication.
Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstruction
of phylogenetic trees. Molecular Biological and Evolution 4 (1987) 406-425
Farris, J.: The logical basis of phylogenetic analysis. In Platnick, N., Funk, V.,
eds.: Advances in Cladistics. Columbia Univ. Press, New York (1983) 1-36
Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17 (1981) 368-376

Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology 5 (1998) 555-570

Bader, D., Moret, B., Vawter, L.: Industrial applications of high-performance
computing for phylogeny reconstruction. In Siegel, H., ed.: Proc. SPIE Commercial
Applications for High-Performance Computing. Volume 4528., Denver, CO, SPIE
(2001) 159-168

Bader, D., Moret, B.M., Warnow, T., Wyman, S., Yan, M.: High-performance al-
gorithm engineering for gene-order phylogenies. In: DIMACS Workshop on Whole
Genome Comparison, Piscataway, NJ, Rutgers University (2001)

Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for
computational phylogenetics. J. Supercomputing 22 (2002) 99-111 Special issue
on the best papers from ICCS’01.

Moret, B., Wyman, S., Bader, D., Warnow, T, Yan, M.: A new implementation and
detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. Biocomputing
(PSB 2001), Hawaii (2001) 583-594

21.

22.

23.

High-Performance Algorithm Engineering 21

Moret, B.M., Bader, D., Warnow, T., Wyman, S., Yan, M.: GRAPPA: a high-
performance computational tool for phylogeny reconstruction from gene-order
data. In: Proc. Botany, Albuquerque, NM (2001)

Yan, M.: High Performance Algorithms for Phylogeny Reconstruction with Max-
imum Parsimony. PhD thesis, Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM (2004)

Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. Journal of
Computational Biology 8 (2001) 483-491

The “Real” Approximation Factor of the MST
Heuristic for the Minimum Energy Broadcasting

Michele Flammini!, Alfredo Navarra!, and Stephane Perennes?

L Computer Science Department, University of L’Aquila,
Via Vetoio, loc. Coppito I-67100 L’Aquila, Italy
{flammini, navarra}@di.univaq.it
2 MASCOTTE project, 13S-CNRS/INRIA /University of Nice,
Route des Lucioles BP 93 F-06902 Sophia Antipolis, France
Stephane.Perennes@sophia.inria.fr

Abstract. The paper deals with one of the most studied problems dur-
ing the last years in the field of wireless communications in Ad-Hoc
networks. The problem consists in reducing the total energy consump-
tion of wireless radio stations randomly spread on a given area of interest
to perform the basic pattern of communication given by the Broadcast.
Recently an almost tight 6.33-approximation of the Minimum Spanning
Tree heuristic has been proved [8]. While such a bound is theoretically
close to optimum compared to the known lower bound of 6 [10], there
is an evident gap with practical experimental results. By extensive ex-
periments, proposing a new technique to generate input instances and
supported by theoretical results, we show how the approximation ratio
can be actually considered close to 4 for a “real world” set of instances,
that is, instances with a number of nodes more representative of practical
purposes.

1 Introduction

In the context of Ad-Hoc networking, one of the most popular studied problems
is the so called Minimum Energy Broadcast Routing (MEBR). The problem arises
from the requirement of a basic pattern of communication such as the Broadcast.
Given a set of radio stations (or nodes) randomly (or suitably) spread on a given
area of interest, and specified one of those stations as the source, the problem
is to assign the transmission range of each station so as to induce a broadcast
communication from the source with a minimum overall power consumption.
A communication session can be established through a series of wireless links
involving any of the network nodes and therefore Ad-Hoc networks are multi-hop
networks. To this aim, the nodes have the ability to adjust their transmission
power as needed. Thus every node is assigned a transmission range and every
node inside this range receives its message. Considering the fact that the nodes
operate with a limited supply of energy and given the nature of the operations for
which this kind of networks are used, such as military operations or emergency

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 22-31, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

The “Real” Approximation Factor of the MST Heuristic 23

disaster relief, a fundamental problem is of assigning transmission ranges in such
a way that the total consumed energy is minimum.

According to the mostly used power attenuation model [11, 4], when a node s
transmits with power Ps, a node r can receive its message if and only if HSPW > 1,
where ||s, 7| is the Euclidean distance between s and r.

Since the MEBR problem is N P-hard [3], a lot of effort was devoted to
device good approximation algorithms. Several papers progressively reduced the
estimate of the approximation ratio of the fundamental Minimum Spanning Tree
(MST) heuristic from 40 to 6.33 [3,6,10,4,8]. Roughly speaking the heuristic
computes the directed minimum spanning tree from the given source to the
leaves starting from the complete weighted graph obtained from the set of nodes
in which weights are the square distances of the endpoints of the edges. For each
node, then, the heuristic assigns a power of transmission equal to the weight of
the longest outgoing edge.

Even if the 6.33-approximation ratio is almost tight according to the lower
bound of 6 [10], there is an evident gap between such a ratio and the experi-
mental results obtained in several papers (see for instance [11,2,6,7,1,9]). This
suggests to investigate more carefully the possible input instances in order to
better understand this phenomenon. The goal is to classify some specific family
of instances according to the output of the MST heuristic. The most common
method used to randomly generate the input instances has been that of uniformly
spreading the nodes inside a given area. In this paper we propose a new method
to produce instances in order to maximize the final cost of the MST heuristic. In
this way we better catch the intrinsic properties of the problem. Motivated by
the obtained experimental studies, we also provide theoretical results that lead
to an almost tight 4-approximation ratio for high-density instances of the MEBR,
problem. The tightness of such ratio is of its own interest since the common in-
tuition was of a much better performance of the MST heuristic on high-density
instances. Moreover, such instances are more representative of practical environ-
ments since for a small number of nodes exhaustive algorithms can be applied
(see for instance the integer linear programming formulation proposed in [6]).

The paper is organized as follows. In the next section we briefly provide some
basic definitions and summarize the estimation method proposed in [4] by which
an 8-approximation for the MST heuristic arises. That will be useful for the rest
of the paper. In Section 3 we formally describe the algorithm to generate suitable
instances that maximize the cost of the MST heuristic. In Section 4 we present
the obtained experimental results and in Section 5 we present theoretical results
that strengthen the experimental ones. Finally, in Section 6, we discuss some
conclusive remarks.

2 Definitions and Notation

Let us first provide a formal definition of the Minimum Energy Broadcast Rout-
ing (MEBR) problem in the 2-dimensional space (see [3, 10, 2] for a more detailed
discussion). Given a set of points S in a 2-dimensional Euclidean space that

24 M. Flammini, A. Navarra, and S. Perennes

represents the set of radio stations, let G2(S) be the complete weighted graph
whose nodes are the points of S and in which the weight of each edge {x,y} is
the power consumption needed for a correct communication between x and vy,
that is ||z, y||*.

A range assignment for S is a function r : S — IR such that the range r(x) of
a station = denotes the maximal distance from z at which signals can be correctly
received. The total cost of a range assignment is then cost(r) = > g 7(2)%

A range assignment r for S yields a directed communication graph G" =
(S, A) such that, for each (x,y) € S?, the directed edge (z,y) belongs to A if
and only if y is at distance at most r(z) from . In other words, (z,y) belongs to
A if and only if the power emission of z is at least equal to the weight of {z,y}
in G?(9). In order to perform the required minimum energy broadcast from a
given source s € S, G" must contain a directed spanning tree rooted at s and
must have the minimum cost.

One fundamental algorithm, called the MST heuristic [11], is based on the
idea of tuning ranges so as to include a spanning tree of minimum cost. More pre-
cisely, denoted as T5(.S) a minimum spanning tree of G2(S) and as M.ST(G2(S))
its cost, considering T5(S) rooted at the source station s, the heuristic directs
the edges of T5(S) toward the leaves and sets the range r(x) of every inter-
nal station x of T5(S) with k children z1,...,z) in such a way that r(z) =
maw;—1,... k||, z;]|*. In other words, r is the range assignment of minimum cost
inducing the directed tree derived from T5(S) and it is such that cost(r) <
MST(G5(S)).

Let us denote by C,. a circle of radius r. From [3, 10, 4] it is possible to restrict
the study of the performance of the MST heuristic just considering C7 centered
at the source as area of interest to locate the radio stations. An 8-approximation
is then proved in [4] by assigning a growing circle to each node till all the circles
form a unique connected area component. Such an area, denoted by a(S, "=),
is related to the M ST cost according to the following equation (see [5,4]),

MST(Go(S)) = 2 /0 T S,r) = 1)1 dr,

where 7,4, is the size of the longest edge contained in MST(S) and n(S,r)
is the number of connected components obtained from S associating a circle of
radius r to each node'. The following bounds are then derived

%MST(S) +

™ TTH(I’I' Tmaac
ngmaz < a(S7 2) < ﬂ-(l + T)Qa

hence obtaining
MST(S) <41 + Tmax)-

The 8-approximation then holds by observing that 7,4, < 1. For 7,4, tend-
ing to 0, the approximation ratio of the MST heuristic tends to 4. Studying the

! Two nodes belong to the same connected component if and only if the two associated
circles are overlapping in at least one point.

The “Real” Approximation Factor of the MST Heuristic 25

results obtained by extensive experiments we are going to show that, in prac-
tice, that is, for a considerable number of nodes, such a bound of 4 is almost
tight.

3 Augmenting Algorithm

It is well-known that the lower bound for the MST heuristic is given by the
hexagonal shape presented in [10] where the instance is given by seven nodes
that are the center and the vertices of a regular hexagon inscribed in C; (see
Figure 1). On such an instance the MST heuristic cost can be equal to 6 while
the optimal solution costs just 1. It is evident that 6 is the maximum cost for
instances inside a C7 in which the source is its center and the number of nodes
is at most 7. Performing experiments as described in [11,2,6,7,1,9], even just
throwing seven nodes, in which one of them is fixed to be the center of C; and
the other ones are randomly at uniform distributed inside such a circle, it is
really “lucky” to happen that a similar high cost instance appears. Moreover
increasing the number of nodes involved in the experiments, on average, the cost
of the performed MST decreases.

.

~—

Fig. 1. The 6 lower bound for the MST heuristic provided in [10]

In this paper we are interested in maximizing the cost of a possible MST
inside C; considering its center s as the source in order to better understand
the actual quality of the performance of the MST heuristic over interesting in-
stances more representative of the real world applications. Roughly speaking,
starting from random instances, the maximization is due to slight movements
of the nodes according to some useful properties of the MST construction. For
instance if we want to increase the cost of an edge of the MST, the easiest
idea is to increase the distance of its endpoints. Let us now consider a node
v # s of a generic instance given in input. We consider the degree of such
a node in the undirected tree obtained from the MST heuristic before assign-
ing the directions. Let N, = {v1,va,...,v} be the set of the neighbors of v
in such a tree. We evaluate the median point p = (x,y) whose coordinates

26 M. Flammini, A. Navarra, and S. Perennes

Fig. 2. Augmenting the edge costs when a node has one or more neighbors and when
it is on the circumference of C;

are given by the average of the corresponding coordinates of the nodes in INV,,

that is
1 & 1
'T:%;xvi? y:%;yvl

The idea is then to move the node v farther from p but, of course, remaining
inside the considered circle. In general this should augment the cost of the MST
on the edge connecting the node v to the rest of the tree (see Figure 2).

It can also happen that such a movement completely changes the structure
of the MST reducing the initial cost. In that case we do not validate the move-
ment. Given an instance, the augmenting algorithm performs this computation
for each node twisting over all the nodes but s till no movements are allowed.
As we are going to show, the movements depend also by a random parameter
rand. Therefore, in order to give to a node a “second chance” to move, we can
repeat such computations for a fixed number of rounds. Notice that, when a
node reaches the border that is the circumference of the circle, the only allowed
movement is over such circumference.

A further way to increase the cost of the MST is then to try to delete a node.
We choose as candidate the node with highest degree. The idea behind this
choice is that the highest degree node could be considered as the intermediary
node to connect its neighbors, so removing it, a “big hole” is luckily to appear.
On one hand this means that the distances to connect the remaining disjoint
subtrees should increase the overall cost. On the other hand, we are creating
more space for further movements. After a deletion, the algorithm starts again
with the movements. Indeed the deletion can be considered as a movement in
which two nodes are overlapping. If the deletion does not increase the cost of
the current MST, we do not validate it. In such a case, the next step, will be the
deletion of the second highest degree node and so on. The whole procedure is
repeated till no movements and no deletions are allowed. Notice that eventually
the whole algorithm can be repeated several consecutive times in order to obtain
more accurate results.

We now define more precisely the algorithm roughly described above. Let
V = {s,v1,v2,...,0,} be a set of nodes inside C; centered in s and let € be the

The “Real” Approximation Factor of the MST Heuristic 27

step of the movements we allow, that is, the maximum fraction of the distance
from the median point p we allow to move the current point v.

Algo(s,V,e)

1: flagl =1; \x flagl determines if there is an allowed movement anymore.

2: flag2 =1; \x flag2 determines if there is an allowed deletion anymore.

3: N=|V|—=1; \x Number of available nodes for the augmenting methods.

4: 1 =1;

5. 7=1

6: Compute the MST over the complete weighted graph G induced by the set of nodes

10:
11:
12:

13:
14:

15:
16:

17:
18:
19:
20:

21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

V in which each edge {x,y} has weight ||z,y]||?; save its cost in cost1;
while flag2 < N do
while flagl < N do
Consider the node v; = {x;,y:} and its k; neighbors,
T = %1 Zf;l To; Y = %Z Zf;l Yu;; \x Coordinates of the median point p.
Let rand be a random number in [0, 1];
if v; is not on the circumference then
Let v, be a point inside C7 on the line passing through v; and p in such a
way that [lv;, p|| < [lvj, p|l < (1 + € rand)||vi, p||;
else
Let v be a point on the circumference further from p with respect to v;
such that the arc joining v; and v, has length € - rand;
end if
Compute the MST over the complete weighted graph induced by the set of
nodes (V \ v;) U vj; save its cost in cost2;
if cost2 > costl then
V=(V\v)Uvj;
costl = cost2;

flagl = 1;
else

flagl = flagl +1; *x The movement is not valid.
end if

i = (i+ 1)mod N;
end while
Let v; be the j-th highest degree node of the current MST, compute the MST
over the complete weighted graph induced by the set of nodes V' \ v;; save its
cost in cost2.
if cost2 > costl then

V=V\vj;

N =N —1;

costl = cost2;

flagl =1,

flag2 =1,
else

flag2 = flag2 +1; \x The deletion is not valid.
end if

j =+)mod N
end while

28 M. Flammini, A. Navarra, and S. Perennes

The validated movements (and deletions) imply a monotonic increasing func-
tion on the cost of the MST. Since such a cost is bounded by 6.33 [8], the termi-
nation of the algorithm is guaranteed. Actually this is accomplished by the min-
imal constant growth in each computation given by the minimum performable
positive number of the working machine. A strategy to speed up the algorithm
could be to modify the if condition of lines 17 and 27 by cost2 > costl + ¢,
hence introducing a further parameter ¢ that fixes the minimal growth at each
augmenting step.

4 Experimental Results

We run the algorithm over hundreds of instances from 5 up to 100 nodes. Table 1
resumes the average and the maximum costs obtained on random instances as
in previous papers and using our augmenting method for € equal to .5 and .1.
We also repeated the execution of the algorithm two consecutive times for each
instance.

Compared to the standard random generated instances, the average costs
were almost tripled while the maximum almost doubled. The numerical results
obtained are very interesting since they show that standard random instances are
not so well representative to study the bounds of the MEBR problem. Moreover,
as “side effect” of such experiments, another very interesting obtained property
is about the topologies obtained in the augmented instances. While for instances
till around 15 nodes our method modifies the nodes distribution tending to the
well-known hexagon shape of Figure 1, increasing the number of nodes, things
become more and more interesting.

In Figure 3 an instance of 100 nodes is given before and after the movements
and deletions. What follows from those experiments is an evident regularity on
the final obtained instances. As showed in Figure 3, in general, after the augmen-

Table 1. The average and the maximum costs obtained on standard random instances
and using the previous augmenting algorithm on instances of 5 up to 100 nodes and €
equal to 0.1 and 0.5

n Random |Augmented, € = .5|Augmented, ¢ = .1
Average| Max |Average| Max |Average| Max

5 | 1.301 [2.8752| 3.6456 4 3.6276 4

7 | 1.4799 |2.4793| 4.5454 | 5.7386 | 4.5606 | 5.8797

10 | 1.8019 [3.1231| 5.2848 | 5.7851 5.353 5.9187

15| 1.8875 |2.6691| 4.8648 | 5.4803 | 4.777 | 5.7728

20| 1.854 [2.6187| 4.2817 | 5.0906 | 4.1316 | 5.1222

30| 1.8252 |2.2328| 4.137 4.45 3.991 4.1819

50| 1.812 [1,9718| 3.7319 | 3,8901 | 3.6331 | 3,7598

100| 1.6833 |1.8829| 3.5673 | 3.7223 | 3.4898 | 3.812

The “Real” Approximation Factor of the MST Heuristic 29

tation, nodes look like disposed on some kind of regular grid. This strengthens
the lower bound given by the regular hexagon shape.

It is evident that our method considerably increases the average and the
maximum cost of the investigated instances. Moreover, the experiments also
suggest to consider regular distributions of the nodes in order to obtain maximal
cost instances. In the next section we investigate this property hence obtaining
an almost tight 4-approximation upper bound for the MST heuristic in the case
of high-density distributions.

+1 4 »
ot M 2 " +
*le
0’0. * et * + .
+* +
*y * e
hifad AP 05 4 . *
. *, . * . - + g +*
+*
b4 * * N hd ¢ *
PR * . +
+ 4 PO . 4 * . [*
T T 1= ‘I ..'I T T 1= ’l w
-4 * 05 * 0% o M L0 . 05 4
* 4, + 4 o + . +
P *, PO LA * L % * -
-054°* + + % 054 +
' + - L *
* * . * - - * . *
+ - * o
0*" +
- +
I, #J+ *

Fig. 3. A random instance of 100 nodes before and after the augmenting method. The
number of nodes decreased from 100 to 65, while the cost increased from 1.8774 to
3.6809

5 High-Density Case

In this section we show that the upper bound of 4 provided in Section 2 for
the MST heuristic in the case of 1,4, tending to 0 is almost tight. We provide
an example of uniform distribution with high-density of the radio stations in
which the cost of the solution returned by the MST heuristic is very close to 4.
Actually, this is a significant result, in fact, as already stressed before, it was a
common idea, even supported by experimental results, that the MST heuristic
is very close to the optimum for the high-density case (see [11,2,6,7,1,9]). It
is also interesting to notice that the next construction follows directly from
the previous experimental results. Such results, in fact, suggest to investigate
the case of equidistant nodes in order to increase the cost of the computed
MST.

Let us assume an high-density uniform distributions of nodes inside C; and
let the set of nodes S be located on the vertices of a grid composed by equilateral
triangles as showed in Figure 4. Roughly speaking, the idea is now to estimate

30 M. Flammini, A. Navarra, and S. Perennes

Fig. 4. The subdivision of a circle in triangles and the association of each node to a
triangle

the cost of the MST heuristic? and comparing it with respect to the optimal
solution whose cost is upper bounded by the radius of C; of length 1. Associating
a triangle to each node, roughly half of the triangles remain “singles” (the black
ones in Figure 4). Since for a given side [, the area of an equilateral triangle is

equal to %lQ, and considering that, by construction, the number of nodes of the

MST is equal to the number of its edges plus 1, %MST(S) ~ “712 and then

2
MST(S) ~ 7% > 3.62.

The following theorem is then a direct consequence of the above discussions.

Theorem 1. In the 2-dimensional FEuclidean space, the upper bound on the ap-
proximation ratio of the MST heuristic for the Minimum Energy Broadcast Rout-
ing problem with high-density distribution of the nodes is between 3.62 and 4.

6 Conclusions

We closely examined the MEBR problem by extensive experiments. The main
goal was to find special instances in order to maximize the possible cost of the
MST heuristic. Motivated by the gap between the theoretical bounds and the
values observed by experimental studies, we proposed a new method to generate
input instances hence obtaining interesting results. Those experiments, in fact,
showed that the usually considered standard random instances are not so well
representative for upper bounding the cost of the MST heuristic. Moreover they
also suggested how to build expensive instances hence validating the well-known
lower bound of 6 for the MEBR problem and the 4 approximation factor in the
high-density case.

2 In the case of regular distribution such as a triangular grid, there exists always an
MST composed by a path that visits all the nodes like in Figure 1. Therefore, the
maximal cost of the MST heuristic coincides with the cost of the MST.

The “Real” Approximation Factor of the MST Heuristic 31

References

1.

10.

11.

S. Athanassopoulos, I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Exper-
imental Comparison of Algorithms for Energy-Efficient Multicasting in Ad Hoc
Networks. In Proceedings of the 3" International Conference on Ad-Hoc Networks
and Wireless (ADHOC-NOW), volume 3158 of Lecture Notes in Computer Science,
pages 183-196. Springer Verlag, 2004.

A. Clementi, G. Huiban, P. Penna, G. Rossi, and Y. C. Verhoeven. On the approx-
imation ratio of the mst-based heuristic for the energy-efficient broadcast problem
in static ad-hoc radio networks. In Proceedings of the 3" IEEE IPDPS Workshop
on Wireless, Mobile and Ad Hoc Networks (WMAN), 2003.

A.E.F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the com-
plexity of computing minimum energy consumption broadcast subgraph. In Pro-
ceedings of the 18" Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), volume 2010 of Lecture Notes in Computer Science, pages 121-131.
Springer-Verlag, 2001.

M. Flammini, R. Klasing, A. Navarra, and S. Perennes. Improved approximation
results for the Minimum Energy Broadcasting Problem. In Proceedings of ACM
Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pages
85-91, 2004.

A. M. Frieze and C. J. H. McDiarmid. On Random Minimum Length Spanning
Trees. Combinatorica, 9:363-374, 1989.

R. Klasing, A. Navarra, A. Papadopoulos, and S. Perennes. Adaptive Broadcast
Consumption (ABC), a new heuristic and new bounds for the minimum energy
broadcast routing problem. In Proceedings of the 3"¢ IFIP-TC6 International
Networking Conference, volume 3042 of Lecture Notes in Computer Science, pages
866—877. Springer Verlag, 2004.

F. J. O. Martnez, I. Stojmenovic, F. G. Nocetti, and J. S. Gonzalez. Finding Min-
imum Transmission Radii for Preserving Connectivity and Constructing Minimal
Spanning Trees in Ad Hoc and Sensor Networks. In Proceedings of the 3" Interna-
tional Workshop on Ezperimental and Efficient Algorithms (WEA), volume 3059
of Lecture Notes in Computer Science, pages 369-382. Springer Verlag, 2004.

A. Navarra. Tighter bounds for the Minimum Energy Broadcasting problem. In
Proceedings of the 3" International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2005, to appear.

P. Penna and C. Ventre. Energy-efficient broadcasting in ad-hoc networks: com-
bining msts with shortest-path trees. In Proceedings of the 15* ACM International
Workshop on Performance Evaluation of Wireless, Ad Hoc, Sensor and Ubiquitous
Networks (PE-WASUN), pages 61-68. ACM Press, 2004.

P. J. Wan, G. Calinescu, X. Li, and O. Frieder. Minimum energy broadcasting in
static ad hoc wireless networks. Wireless Networks, 8(6):607-617, 2002. Extended
abstract appeared in Proceedings of the 20" Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM) (2001).

J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the construction of
energy-efficient broadcast and multicast trees in wireless networks. In Proceedings
of the 19" Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pages 585-594. IEEE Computer Society, 2000.

Implementing Minimum Cycle Basis Algorithms

Kurt Mehlhorn and Dimitrios Michail

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
{mehlhorn, michail}@mpi-sb.mpg.de

Abstract. In this paper we consider the problem of computing a mini-
mum cycle basis of an undirected graph G = (V, E') with n vertices and m
edges. We describe an efficient implementation of an O(m? 4+ mn?®logn)
algorithm presented in [1]. For sparse graphs this is the currently best
known algorithm. This algorithm’s running time can be partitioned into
two parts with time O(m?®) and O(m?*n 4+ mn?logn) respectively. Our
experimental findings imply that the true bottleneck of a sophisticated
implementation is the O(m?n + mn?logn) part. A straightforward im-
plementation would require 2(nm) shortest path computations, thus we
develop several heuristics in order to get a practical algorithm. Our exper-
iments show that in random graphs our techniques result in a significant
speedup.

Based on our experimental observations, we combine the two funda-
mentally different approaches to compute a minimum cycle basis used
in [1,2] and [3,4], to obtain a new hybrid algorithm with running time
O(m?*n?). The hybrid algorithm is very efficient in practice for random
dense unweighted graphs.

Finally, we compare these two algorithms with a number of previ-
ous implementations for finding a minimum cycle basis in an undirected
graph.

1 Introduction

Let G = (V, E) be an undirected graph. A cycle of G is any subgraph in which
each vertex has even degree. Associated with each cycle is an incidence vector
x, indexed on E, where z. = 1 if e is an edge of C, x. = 0 otherwise. The vector
space over GF(2) generated by the incidence vectors of cycles is called the cycle
space of G. It is well-known that this vector space has dimension N = m —n+«x,
where m is the number of edges, n is the number of vertices, and k the number
of connected components of G. A maximal set of linearly independent cycles is
called a cycle basis.

The edges of G have non-negative weights. The weight of a cycle is the sum
of the weights of its edges. The weight of a cycle basis is the sum of the weights
of its cycles. We consider the problem of computing a cycle basis of minimum
weight in a graph; we use the abbreviation MCB to refer to a minimum cycle
basis.

The problem has been extensively studied, both in its general setting and in
special classes of graphs. Its importance lies in its use as a preprocessing step

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 32-43, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Implementing Minimum Cycle Basis Algorithms 33

in several algorithms. Such algorithms include diverse applications like electrical
circuit theory [5], structural engineering [6] and periodic event scheduling [1].

The first polynomial time algorithm for the minimum cycle basis problem
was given by Horton [3] with running time O(m?3n). de Pina [1] gave an O(m? +
mn?logn) algorithm by using a different approach. Golynski and Horton [4]
improved Horton’s algorithm to O(m*“n) by using fast matrix multiplication. It
is presently known [7] that w < 2.376. Recently Berger et al. [8] gave another
O(m3 +mn?logn) algorithm by using similar ideas as de Pina. Finally, Kavitha
et al. [2] improved de Pina’s algorithm into O(m?n + mn?logn) again by us-
ing fast matrix multiplication. In the same paper a faster 1 + ¢ approximation
algorithm, for any € > 0, is presented.

In this paper we report our experimental findings from our implementation
of the O(m?3 + mn?logn) algorithm presented in [1]. Our implementation uses
LEDA [9]. We develop a set of heuristics which improve the best-case perfor-
mance of the algorithm while maintaining its asymptotics. Finally, we consider
a hybrid algorithm obtained by combining the two different approaches used
in [1,2] and [3,4] with running time O(m?n?), and compare the implementations.
The new algorithm is motivated by our need to reduce the cost of the shortest
path computations. The resulting algorithm seems to be very efficient in practice
for random dense unweighted graphs. Finally, we compare our implementations
with previous implementations of minimum cycle basis algorithms [3, 8].

The paper is organized as follows. In Section 2 we briefly describe the algo-
rithms.In Section 2.1 we describe our heuristics and in 2.2 we present our new
algorithm. In Section 3 we give and discuss our experimental results.

2 Algorithms

Let G(V, E) be an undirected graph with m edges and n vertices. Let [: E — R
be a non-negative length function on the edges. Let s be the number of connected
components of G and let T be any spanning forest of G. Also let ey,...,ey be
the edges of G\ T in some arbitrary but fixed order. Note that N =m —n+ &
is exactly the dimension of the cycle space.

The algorithm [1] computes the cycles of an MCB and their witnesses. A
witness S of a cycle C is a subset of {e1,...,enx} which will prove that C
belongs to the MCB. We view these subsets in terms of their incidence vectors
over {e1,...,en}. Hence, both cycles and witnesses are vectors in the space
{0,1}™. (C, S) stands for the standard inner product of vectors C' and S. Since
we are at the field GF(2) observe that (C,S) =1 if and only if the intersection
of the two edge sets has odd cardinality. Finally, adding two vectors C' and S in
GF(2) is the same as the symmetric difference of the two edge sets. Algorithm
1 gives a full description.

The algorithm in phase ¢ has two parts, one is the computation of the cycle
C; and the second part is the update of the sets S; for j > i. Note that updating
the sets S; for j > 4 is nothing more than maintaining a basis {S;+1,...,Sn} of
the subspace orthogonal to {C1,...,C;}.

34 K. Mehlhorn and D. Michail

Algorithm 1 Construct an MCB
Set S; = {e;} foralli=1,...,N.
fori=1to N do
Find C; as the shortest cycle in G s.t (C;, S;) = 1.
for j=¢+1to N do
if <SJ7C,L> =1 then
S;=5;4+S;
end if
end for
end for

Computing the Cycles. Given S;, it is easy to compute a shortest cycle C; such
that (C;,S;) = 1 by reducing it to n shortest path computations in an appropri-
ate graph G;. The following construction is well-known.

G, has two copies v and v~ of each vertex v € V. For each edge e = (u,v) €
E do:if e ¢ S;, then add edges (u',v") and (u™,v™) to the edge set of G; and
assign their weights to be the same as e. If e € S;, then add edges (u™,v~) and
(u™,v") to the edge set of G; and assign their weights to be the same as e. G;
can be visualized as 2 levels of G (the + level and the — level). Within each
level, we have edges of E'\ S;. Between the levels we have the edges of S;. Call
G, the signed graph.

Any v to v~ path p in G; corresponds to a cycle in G by identifying edges
in G; with their corresponding edges in G. If an edge e € G occurs multiple
times we include it if the number of occurrences of e modulo 2 is 1. Because we
identify v* and v~ with v, the path in G resulting from p is a cycle C. Since we
start from a positive vertex and end in a negative one, the cycle has to change
sign an odd number of times and therefore uses an odd number of edges from
;. In order to find a shortest cycle, we compute a shortest path from v™ to v—
forallve V.

Running Time. In each phase we have the shortest path computations which
take time O(n(m +nlogn)) and the update of the sets which take O(m?) time.
We execute O(m) phases and therefore the running time is O(m3 + m?n +
mn?logn).

2.1 Heuristic Improvements

In this section we present several heuristics which can improve the running time
substantially. All heuristics preserve the worst-case time and space bounds.

Compressed representation (H1) All vectors (sets S and cycles C') which are
handled by the algorithm are in {0, 1}"*. Moreover, any operations performed are
normal set operations. This allows us to use a compressed representation where
each entry of these vectors is represented by a bit of an integer. This allows us
to save up space and at the same time to perform 32 or 64 bitwise operations in
parallel.

Implementing Minimum Cycle Basis Algorithms 35

Upper bounding the shortest path (H2) During phase ¢ we might perform up
to n shortest path computations in order to compute the shortest cycle C; with
an odd intersection with the set S;. Following similar observations of [10] we
can use the shortest path found so far as an upper bound on the shortest path.
This is implemented as follows; a node is only added in the priority queue of
Dijkstra’s implementation if its current distance is not more than our current
upper bound.

Reducing the shortest path computations (H3) We come to the most important
heuristic. In each of the N phases we are performing n shortest path computa-
tions. This results to £2(mn) shortest path computations.

Let S = {ey,ea,...,e;} be a witness at some point of the execution. We need
to compute the shortest cycle C s.t (C,S) = 1. We can reduce the number of
shortest path computations based on the following observation.

Let C>; be the shortest cycle in G s.t (C>;,S) = 1, and C>;N{e,..., €1} =

(), and e; € C>;. Then cycle C can be expressed as C' = 7’)17/Ln C>;. We can
=1,

compute C>; in the following way. We delete edges {e1,...,e;} from the graph
G and the corresponding edges from the signed graph G;. Let e, = (v,u) € G.
Then we compute a shortest path in G; from v+ to u™. The path computed
will have an even number of edges from the set S, and together with e; an odd
number. Since we deleted edges {eq,...,e;} the resulting cycle does not contain
any edges from {eq,...,e;_1}.

Using the above observation we can compute each cycle in O(kSP(n,m))
time when |S| = k < n and in O(nSP(n,m)) when |S| > n. Thus the running
time for the cycles computations is equal to SP(m,n)->_,_; ymin{n,[S;|}
where SP(m,n) is the time to compute a single-source shortest path on an
undirected weighted graph with m edges and n vertices.

2.2 A New Hybrid Algorithm

The first polynomial algorithm [3] developed, did not compute the cycles one by
one but instead computed a superset of the MCB and then greedily extracted
the MCB by Gaussian elimination. This superset contains O(mn) cycles which
are constructed in the following way.

For each vertex v and edge e = (u,w), construct the cycle C = SP(v,u) +
SP(v,w) + (u, w) where SP(a,b) is the shortest path from a to b. If these two
shortest paths do not contain a vertex other than v in common then keep the
cycle otherwise discard it. Let us call this set of cycles the Horton set. It was
shown in [3] that the Horton set always contains an MCB. However, not every
MCB is contained in the Horton set.

Based on the above and motivated by the need to reduce the cost of the
shortest path computations we developed a new algorithm, which combines the
two approaches. That is, compute the Horton set and extract the MCB not by
using Gaussian elimination which would take time O(m3n) but by using the
orthogonal space of the cycle space as we did in Section 2. The Horton set
contains an MCB but not necessarily all the cycles that belong to any MCB. We

36 K. Mehlhorn and D. Michail

resolve this difficulty by ensuring uniqueness of the MCB. We ensure uniqueness
by ensuring uniqueness of the shortest path distances on the graph (either by
perturbation or by lexicographic ordering). After the preprocessing step, every
cycle of the MCB will be contained in the Horton set and therefore we can query
the superset for the cycles instead of the graph G. A succinct description can be
found in Algorithm 2.

Algorithm 2 Hybrid MCB algorithm
Ensure uniqueness of shortest path distances of G (lexicographically or by pertur-
bation).
Construct superset (Horton set) S of MCB.
Set S; = {e;} foralli=1,...,N.
for i =1to N do
Find C; as the shortest cycle in S s.t (C;, S;) = 1.
for j=¢+1to N do
if <SJ,CL> =1 then
S; =85+
end if
end for
end for

The above algorithm has worst case running time O(m?n?). This is because
the Horton set contains at most mn cycles, we need to search for at most m
cycles and each cycle contains at most n edges. The important property of this
algorithm is that the time to actually compute the cycles is only O(n?m), which
is by a factor of > + logn better than the O(m®n + mn?logn) time required
by Algorithm 1. Together with the experimental observation that in general
the linear independence step is not the bottleneck, we actually hope to have
developed a very efficient algorithm.

3 Experiments

We perform several experiments in order to understand the running time of
the algorithms using the previously presented heuristics. In order to under-
stand the speedup obtained, especially from the use of the HS heuristic, we
study in more detail the cardinalities of the sets S during the algorithm as well
as how many operations are required in order to update these sets. We also
compare the running times of Algorithms 1 and 2, with previous implementa-
tions.

All experiments are done using random sparse and dense graphs. All graphs
were constructed using the G(n;p) model, for p = 4/n,0.3,0.5 and 0.9. Our
implementation uses LEDA [9]. All experiments were performed on a Pentium
1.7Ghz machine with 1 GB of memory, running GNU/Linux. We used the GNU
g++ 3.3 compiler with the -O optimization flag. All other implementations, use
the boost C++ libraries [11].

Implementing Minimum Cycle Basis Algorithms 37

3.1 Updating S;’s

In this section we present experimental results which suggest that the dominating
factor of the running time of Algorithm 1 (at least for random graphs) is not
the time needed to update the sets .S but the time to compute the cycles.

Note that the time to update the sets is O(m?) and the time to compute the
cycles is O(m?n+mn?logn), thus on sparse graphs this algorithm has the same
running time O(n3 logn) as the fastest known. The currently fastest algorithm [2]
for the MCB problem has running time O(m?n+mn?log n+m®); the m* factor
is dominated by the m?n but we present it here in order to understand what
type of operations the algorithm performs. This algorithm improves upon [1]
w.r.t the time needed to update the sets S by using fast matrix multiplication
techniques.

Although fast matrix multiplication can be practical for medium and large
sized matrices, our experiments show that the time needed to update the sets S
is a small fraction of the time needed to compute the cycles. Figure 1 presents a
comparison of the required time to update the sets .S; and to calculate the cycles
C; by using the signed graph for random weighted graphs.

In order to get a better understanding of this fact, we performed several ex-
periments. As it turns out, in practice, the average cardinality of the sets S is
much less than N and moreover the number of times we actually perform set
updates (if (C;,S;) = 1) is much less than N(N — 1)/2. Moreover, heuristic
H1 decreases the constant factor of the running time (for updating S’s) sub-
stantially by performing 32 or 64 operations in parallel. This constant factor

G(nip), p=0.3 G(nip), p=0.5

4 T T 35 T

T T T T
Update S's —— Update S's ——
Find C’s (signed graph) --3-- Find C's (signed graph) -->—-

time(sec)
o
time(sec)

10 20 30 40 50 60 70 80 L4 10 20 30 40 50 60 70
nodes nodes

Sparse Graphs

T
Update S
Find C's (signed graph) -~ X

time(sec)
>

e

-

0 100 200 300 400 500 600 700 800
nodes

Fig. 1. Comparison of the time taken to update the sets S and the time taken to
calculate the cycles on random weighted graphs, by Algorithm 1

38 K. Mehlhorn and D. Michail

Table 1. Statistics about sets S sizes on sparse random graphs with p = 4/n and dense
random graphs for p = 0.3 and 0.5. Sets are considered during the whole execution of
the algorithm. Column #(S, C') = 1 denotes the number of updates performed on the
sets S. An upper bound on this is N(N — 1)/2, which we actually use when bounding
the algorithm’s running time. Note that the average cardinality of S is very small
compared to N although the maximum cardinality of some S is in O(N)

n [m [N [NN—=1)/2[maz([SD[avg(JSD[# (S,C) =1
sparse (m = 2n)

10 19 10 45 4 2 8
104 | 208 | 108 5778 44 4 258
491 | 981 | 500 124750 226 7 2604
963 | 1925 | 985 484620 425 7 5469
2070(4139 | 2105 2214460 1051 13 20645
4441| 8882 | 4525 | 10235550 2218 17 58186
p=20.3

10 13 4 6 2 2 2
25 90 66 2145 27 3 137
75 | 832 | 758 286903 370 6 3707
150 | 3352 | 3203 5128003 1535 9 22239
200 | 5970 | 5771 | 16649335 2849 10 49066
300 [13455|13156| 86533590 6398 10 116084
500 |37425]36926| 681746275 18688 14 455620
p=0.5

10 22 13 78 7 2 14
25 | 150 | 126 7875 57 4 363
75 | 1387 | 1313 861328 654 6 6282
150 | 5587 | 5438 | 14783203 2729 9 39292
200 | 9950 | 9751 | 47536125 4769 11 86386
300 {22425]|22126| 244768875 10992 13 227548
500 |62375]61876| 1914288750 | 30983 15 837864

decrease does not concern the shortest path computations. Table 1 summarizes
our results.

3.2 Number of Shortest Path Computations

Heuristic H3 improves the best case of the algorithm, while maintaining at the
same time the worst case. Instead of £2(nm) shortest path computations we hope
to perform much less. In Table 2 we study the sizes of the sets S; fori =1,..., N
used to calculate the cycles for sparse and dense graphs respectively.

In both sparse and dense graphs although the maximum set can have quite
large cardinality, the average set size is much less than n. Moreover, in sparse
graphs every set used has cardinality less than n. On dense graphs the sets with
cardinality less than n are more than 95% percent. This implies a significant
speedup due to the H3 heuristic.

Figure 2 compares the running times of Algorithm 1 with and without the
HS3 heuristic. As can easily be seen the improvement is more than a constant
factor.

Implementing Minimum Cycle Basis Algorithms

39

Table 2. Statistics about sets S; sizes on sparse random graphs with p = 4/n and
dense random graphs for p = 0.3 and 0.5, at the moment we calculate cycle C;

n [[N Tmae(SiTavg(SDI5: 5 <l
sparse (m & 2n)
10 19 10 4 2 10
104 | 208 | 108 39 5 108
491 | 981 | 498 246 13 498
963 | 1925 | 980 414 11 980
2070| 4139 | 2108 1036 27 2108
4441| 8882 | 4522 1781 33 4522
p=0.3
10 13 4 2 2 4
25 90 66 20 4 66
75 | 832 | 758 357 15 721
150 | 3352 | 3203 1534 18 3133
200 | 5970 | 5771 2822 29 5635
300 [13455|13156 6607 32 12968
500 [37425(36926| 15965 39 36580
p=0.5
10 22 13 7 3 13
25 | 150 | 126 66 5 121
75 [1387 | 1313 456 10 1276
150 | 5587 | 5438 2454 19 5338
200 | 9950 | 9751 4828 28 9601
300 [22425(22126| 10803 33 21875
500 [62375(61876| 30877 38 61483
G(np), p=03 G(nip), p=05
700 T T T 2000 T T X
with heuristic —+— with heuristic —+— ;
jthout heuristic ——— 1800 - ithout heuristic ~—3 - y
600
1600
500 ‘ 1400
. g 20
2 7 < 1000 e
£ oo 7 L 4
200 g 600
400
100
X 200
X S — e 1
00 0w e e 10 120 10 0 %0 % 40 60 w0 10 120 10 160
nodes nodes
Sparse Graphs
0 with helristic —— X
350 without heuristic --%--
300
250
£ 200
5
T 1s0 -
100 =
50
o g I —

100

500 600

nodes

700

Fig. 2. Running times of Algorithm 1 with and without the H3 heuristic. Without the
heuristic the algorithm is forced to perform 2(nm) shortest path computations

3.3 Running Time

In this section we compare the various implementations for computing a mini-
mum cycle basis. Except for Algorithms 1 (DP) and 2 (HYB) we include in the

40 K. Mehlhorn and D. Michail

comparison two implementations [12, 13] (HOR) of Horton’s algorithm with run-
ning time O(m?>n) and an implementation [12] (FEAS) of the O(m?3 +mn? logn)
algorithm presented in [8]. Algorithms 1 and 2 are implemented with compressed
integer sets. Fast matrix multiplication [2,4] can nicely improve many parts of
these implementations with respect to the worst case complexity. We did not
experiment with these versions of the algorithms.

The comparison of the running times is performed for three different type
of undirected graphs: (a) random sparse graphs, where m =~ 2n, (b) random
graphs from G(n;p) with different density p = 0.3,0.5,0.9 and (c¢) hypercubes.
Tests are performed for both weighted and unweighted graphs. In the case of

G(n;p), p=0.9 hypercubes
18 T 8 T
DP_U —— DP_.U ——
16 - HYB_U ---- 7 F HYB_U --%-—-
FEAS_U ---%--- FEAS_U ---%---
14 -HOR_U1 =} 6 -HOR_U1 =)
12 HOR_U2 -~ HOR_U2 --—=-
— —~ 5
;ﬁ/ 10 Ei .
E ¢ g
= i = 3
6
4 : 2
2 1
[e e e 0
20 50 55 60 5 5.5 6 6.5 7 7.5 8
dimension
G(n;p), p=0.3 G(n;p), p=0.5
20 T T 25
DP_U —— DP_U ——
18 - HYB_U --x-- ; HYB_U --x---
16 | FEAS U ---x--- 20 |- FEAS U ---x---
HOR_U1 =} B HOR_U1 =}
14 HOR_U2 --=- L HOR_U2 --=-
<5 12 <5 15
8 8
g 10]
£ s £ 1
6 »
4 : 5
B o
2 B =
T R ._——;":f/" —
0 — 0 =
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80
nodes nodes
Sparse Graphs
25
DP_U ——
HYBZU ----
20 |- FEAS U ---x---
HOR_U1 =}
HOR_U2 ——=--
< 15
Q
&
1] a.
£ 1
5
_m-
B
0 Woosigo oW F -
0 50 100 150 200 250 300 350

nodes

Fig. 3. Comparison of various algorithms for random unweighted graphs. Algorithm 1 is
denoted as DP_U and Algorithm 2 as HYB_U. HOR_U1 [12] and HOR_UZ2 [13] are two
different implementation of Horton’s [3] algorithm. FEAS_U is an implementation [12]
of an O(m?) algorithm described in [§]

Implementing Minimum Cycle Basis Algorithms 41

Dense unweighted graphs (p=0.9)

1e+09 T T T T
unweighted #cycles —+—
unweighted #queries --x--

[1,256] #cycles ---%---

[1,256] #queries &
1e+08 - [1,65536] #cycles —-m-— E
[1,65536] #queries -0~

— L B i
5 1e+07

s

& 2]

=

S

5 1e+06 |- 8 x |
] x

B

5 +

5

g 100000] x + - E
= x M i

3 n ¥

s

e

x
10000 | + |

- X

1000 § E

nodes

Fig. 4. Number of cycles in the Horton set (set with duplicates) and number of queries
required in this set (set sorted by cycle weight) in order to extract the MCB for random
dense graphs with random weights of different ranges. Each random graph is consid-
ered with three different edge weight ranges: (a) unweighted, (b) weights in [1, 28], (c)
weights in [1, 2]

weighted graphs the weight of an edge is an integer chosen independently at
random from the uniform distribution in the range [0...2%9].

Figures 3 and 5 summarize the results of these comparisons. In the case of
weighted graphs Algorithm 1 is definitely the winner. On the other hand in the
case of dense unweighted graphs Algorithm 2 performs much better. As can
be easily observed the differences on the running time of the implementations
are rather small for sparse graphs. For dense graphs however, we observe a
substantial difference in performance.

Dense Unweighted Graphs. In the case of dense unweighted graphs, the hybrid
algorithm performs better than the other algorithms. However, even on the exact
same graph, the addition of weights changes the performance substantially. This
change in performance is not due to the difference in size of the produced Horton
set, between the unweighted and the weighted case, but due to the total number
of queries that have to be performed in this set.

In the hybrid algorithm before computing the MCB, we sort the cycles of
the Horton set. Then for each of the IV phases, we query the Horton set from
the least costly cycle to the most, until we find a cycle with an odd intersection
with our current witness S. Figure 4 plots for dense graphs the number of cycles
in the Horton set and the number of queries required in order to extract the
MCB from this set. In the case of unweighted graphs, the number of queries is
substantially smaller than in the case of weighted graphs. This is exactly the
reason why the hybrid algorithm outperforms the others in unweighted dense
graphs.

42 K. Mehlhorn and D. Michail

G(n;p), p=0.9 hypercubes
14 . . . 160
DP —+— / DP —+—
12 | HYB ——%-— / 140 |- HYB ---<---
FEAS ---%-- Y FEAS ---%---
HOR & 420 |-HOR &
10 -
o y & 100
g °® Ay 8
T s 3 &
£ 6 e £
3 S = 60
4 ra 40
2 e 20 A
10 15 20 25 30 35 40 45 50 2 3 4 5 6 7 8 9
nodes dimension
G(n;p), p=0.3 G(n;p), p=0.5
12 . 25
DP —+— DP —+—
HYB - HYB -
10 [FEAS ---x--- a 20 | FEAS %
HOR @& S HOR &
s /
s < 15
3 3
gz 6 T
£ £ 0
4
2 5
0 0
10 20 30 40 50 60 70 80 10 20 30
nodes nodes
Sparse Graphs
9
DP —+—
8 - HYB —x-—
FEAS ---%---
7 FHOR
6
% 5
2 4 o
= R
A i i i i i e A~
2 *il T
e
1 : - naemne
CR R
0 g Qg BT e
0 50 100 150 200 250 300 350
nodes

Fig. 5. Comparison of various algorithms for random weighted graphs. Algorithm 1 is
denoted as DP and Algorithm 2 as HYB. HOR [12] is Horton’s [3] algorithm. FEAS is
an implementation [12] of an O(m? 4+ mn?logn) algorithm described in [8]

References

1. de Pina, J.: Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands (1995)

2. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: A faster algorithm for
minimum cycle basis of graphs. In: 31st International Colloquium on Automata,
Languages and Programming, Finland. (2004) 846-857

3. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal of Computing 16 (1987) 359-366

4. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum
cycle basis of a regular matroid. In: 8th Scandinavian Workshop on Algorithm
Theory. (2002)

10.

11.
12.
13.

Implementing Minimum Cycle Basis Algorithms 43

Chua, L.O.,; Chen, L.: On optimally sparse cycle and coboundary basis for a linear
graph. IEEE Trans. Circuit Theory CT-20 (1973) 495-503

Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure
for the structural analysis of skeletal structures by the flexibility method. Proc.
Royal Society of London Series A 350 (1976) 61-70

Coppersmith, D., Winograd, S.: Matrix multiplications via arithmetic progressions.
Journal of Symb. Comput. 9 (1990) 251-280

Berger, F., Gritzmann, P., , de Vries, S.: Minimum cycle basis for network graphs.
Algorithmica 40 (2004) 51-62

Mehlhorn, K., Naher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press (1999)

Bast, H., Mehlhorn, K., Schéfer, G.: A heuristic for dijkstra’s algorithm with many
targets and its use in weighted matching algorithms. Algorithmica 36 (2003) 75-88
Boost: C++ Libraries. (2001) http://www.boost.org.

Kreisbasenbibliothek: CyBaL. (2004) http://www-m9.ma.tum.de/dm/cycles/cybal.
Huber, M.: Implementation of algorithms for sparse cycle bases of graphs. (2002)
http://www-m9.ma.tum.de/dm/cycles/mhuber.

Rounding to an Integral Program*

Refael Hassin and Danny Segev

School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel
{hassin, segevd}@post.tau.ac.il

Abstract. We present a general framework for approximating several NP-hard
problems that have two underlying properties in common. First, the problems
we consider can be formulated as integer covering programs, possibly with ad-
ditional side constraints. Second, the number of covering options is restricted in
some sense, although this property may be well hidden. Our method is a natural
extension of the threshold rounding technique.

1 Introduction

We present a general framework for approximating several special cases of NP-hard
problems that have two underlying properties in common. First, the problems we con-
sider can be formulated as integer covering programs, possibly with additional con-
straints that control the interaction between the variables. Second, the number of cover-
ing options is restricted in some sense, although this property may be well hidden.

Our method is based on the rectangle stabbing algorithm of Gaur, Ibaraki and Kr-
ishnamurti [4], and can be viewed as an extension of the threshold rounding technique,
introduced by Hochbaum [9] for the vertex cover problem. Given an integer program-
ming formulation of the problem, min{c’z : Az > b,z € {0,1}"}, this approach
first relaxes the integrality constraints to obtain the linear program min{c’z : Az >
b,z € [0, 1]™}. The optimal fractional solution 2* to this program is then rounded to an
integral one by setting each variable to 1 if its value is at least A, and to 0 otherwise, for
a threshold parameter .

Since threshold rounding by itself does not guarantee any non-trivial approximation
ratio for the problems we study, we strengthen this method as follows. Instead of round-
ing x* to an integral solution, we round z* to an integral program. In other words, using
x* and a threshold parameter)\, we construct a new linear program min{c’'z : A*z >
b*,x € [0,1]™} with the following two structural properties:

1. Feasibility: Any feasible solution to the new linear program is also feasible to the
original program.

2. Integrality: The extreme points of the polyhedron P* = {x : A*x > b*,x €
[0,1]™} are integral.

It follows that the new linear program can be solved to obtain an integral solution Z to
the original integer program. We prove that the cost of Z is within factor % of optimum
by fitting =* into the polyhedron P*, that is, we show that %x* € P.

* Due to space limitations, we defer most proofs to the full version of this paper.

S.E. Nikoletseas (Ed.): WEA 20035, LNCS 3503, pp. 44-54, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Rounding to an Integral Program 45

1.1 Applications

SET COVER WITH k BLOCKS OF CONSECUTIVE ONES. Let U = {ej,...,e,} be
a ground set of elements, and let S = {Si,...,S,} be a collection of subsets of
U, where each subset .S; is associated with a non-negative cost c;. The objective of
the set cover problem is to find a minimum cost subcollection S’ C S that covers all
elements. We consider a special case of set cover, in which there is a known order O on
{1,..., m} such that the subsets covering each element e € U form at most & “blocks”
in S@(l), .. .,S@(m). More precisely, there are indices If < r{ < --- <[< ri such

that the collection of subsets to which e belongs is |}, UZZ; {Sow}-

MULTI-RADIUS COVER. Let G = (V, E) be a graph with a non-negative edge length
ly,, for every (u,v) € E. The vertices of G represent locations at which transmission
stations are positioned, and each edge of G represents a continuum of demand points
to which we should transmit. A station located at v is associated with a set of allowed
transmission radii R, = {rg,...,r; },0 =17 < --- <7} , where the cost of trans-
mitting to radius 77 is b,, ;. Without loss of generality, 0 = b, o < - -+ < b, 1, for every
v € V. The multi-radius cover problem asks to determine for each station a transmis-
sion radius, such that for each edge (u,v) € F the sum of the radii in v and v is at least
lu,v, and such that the total cost is minimized.

RECTANGLE STABBING. Let R = {ry,...,r,} be a set of axis-parallel rectangles, and
let H and V be finite sets of horizontal and vertical lines, respectively, where each line
[has a non-negative weight w(l). The objective of the rectangle stabbing problem is to
find a minimum weight subset of lines in H U V that intersects all rectangles in R.

GROUP CUT ON A PATH. Let P = (V, E) be a path, in which each edge e € F is
associated with a non-negative cost c., and let G, ..., Gy be k groups, where each
group is a set of at least two vertices. A group G, is separated by the set of edges
F C F if there is a representative v; € G; such that no vertex in G; \ {v;} belongs to
the connected component of P — F' that contains v;. The objective of the group cut on a
path problem (GCP) is to find a minimum cost set of edges that separates all groups. We
consider two special cases of this problem: The case where the vertices of each group
appear consecutively on the path, and the case where the cardinality of each group is at
most d.

FEASIBLE CUT. Let G = (V, E) be a graph with a non-negative cost ¢, for every e €
E. In addition, let Sq, . . ., Sk be a collection of k commodities, where each commodity
is a set of vertices, and let v* € V. A cut (X, X) is feasible if it separates v* from
at least one vertex in each commodity, that is, v* € X and S; N X # 0 for every
1 = 1,..., k. The feasible cut problem asks to find a minimum cost feasible cut. We
consider a special case of this problem, in which each commodity contains at most d
vertices.

1.2 Related Work

The multi-radius cover problem, which is a generalization of the vertex cover problem,
was suggested by Hassin and Segev [7]. They presented two LP-based algorithms that

46 R. Hassin and D. Segev

achieve an approximation ratio of 2. The first algorithm is based on an extension of
threshold rounding, and the second is an efficient primal-dual algorithm that exploits
the special structure of the problem.

Hassin and Megiddo [6] proved that the rectangle stabbing problem is NP-hard,
and presented a 2-approximation algorithm for the special case in which all rectangles
are translates of the same rectangle. Gaur, Ibaraki and Krishnamurti [4] developed a
2-approximation algorithm for the general case. Kovaleva and Spieksma [11] recently
studied several variants of rectangle stabbing.

The group cut on a path problem was introduced by Hassin and Segev [8]. They
showed that this problem is at least as hard to approximate as set cover, and presented
a greedy 2H-approximation algorithm. They also proved that group cut on a path is
polynomial time solvable when the cardinality of each group is at most 3, but at least as
hard to approximate as vertex cover when the bound on cardinality is 4.

The feasible cut problem was first studied by Yu and Cheriyan [12]. They proved
that the problem is NP-hard, and provided an LP-rounding algorithm with an approx-
imation ratio of 2 when each commodity contains two vertices. This special case was
also considered by Bertsimas, Teo and Vohra [2], who presented a 2-approximation
algorithm using dependent rounding. Hochbaum [10] proved that the linear program
in [12] has an optimal solution consisting of half integrals, and obtained a faster 2-
approximation algorithm.

1.3 Our Results

Our main result in Section 2 is a k-approximation algorithm for set cover instances in
which the subsets covering each element form at most k blocks in So(1), - - -, S0 (m)>
where O is some known order. We remark that for every k > 2, Goldberg, Golumbic,
Kaplan and Shamir [5] proved that the problem of recognizing whether such an order
exists is NP-complete. Our result generalizes those of Bar-Yehuda and Even [1] and
Hochbaum [9], whose algorithms guarantee a k-approximation when each block con-
tains a single subset. Our algorithm identifies a collection of special blocks using the
optimal fractional solution to the natural LP-relaxation of set cover. It then constructs a
new integral program, in which the objective is to cover all elements, under the restric-
tion that subsets must be chosen from all special blocks.

We proceed to show that this algorithm can be used to provide a 2-approximation
for multi-radius cover. Using the indexing scheme suggested by Hassin and Segev [7],
we present a new set cover formulation of this problem, and describe an order on the
subsets, such that the subsets covering each element form at most two blocks. In addi-
tion, we show that through our set cover algorithm we can obtain new insight into the
rectangle stabbing algorithm of Gaur, Ibaraki and Krishnamurti [4].

In Section 3 we consider a special case of GCP, in which the vertices of each group
appear consecutively on the path, and show that this problem is at least as hard to ap-
proximate as vertex cover. We then present a 3-approximation algorithm, that is surpris-
ingly based on an incorrect integer program. This program uses an objective function
according to which we might pay the cost of each edge more than once. However, we
prove that the cost of an optimal solution to this program is at most that of an optimal
solution to the original problem. Moreover, we show how to obtain a 3-approximation

Rounding to an Integral Program 47

to the new program, and translate it to a set of edges that separates all groups without
increasing the cost.

We also study another special case of GCP, where the cardinality of each group is
at most d, for which we provide a (d — 2)-approximation algorithm. This algorithm
is based on an integer programming formulation with constraints that depend on the
cardinality of each group!. We remark that since Hassin and Segev [8] proved that the
case d = 4 is at least as hard as vertex cover, any approximation ratio better than d — 2
would improve the best known results regarding vertex cover.

In Section 4 we present a d-approximation algorithm for a special case of the fea-
sible cut problem, in which the cardinality of each commodity is at most d. This result
improves previously known algorithms in two ways, as it is not restricted to commodi-
ties of exactly two vertices and is also very easy to analyze. Our algorithm uses the
optimal fractional solution to an LP-relaxation that was originally suggested by Yu and
Cheriyan [12], and identifies a non-empty subset of each commodity to be separated
from v*. Using these subsets, it then defines a new integral program, that can be inter-
preted as an extension of the well-known MINIMUM s-t CUT problem.

2 Set Cover with k Blocks of Consecutive Ones

In this section we present a k-approximation algorithm for the special case of set cover
in which there is a known order O on {1,...,m} such that the subsets covering each
element e € U form at most & blocks in S (1), ..., S0(m). We also show that this
algorithm can be used to provide a 2-approximation for the multi-radius cover problem,
and to obtain new insight into the rectangle stabbing algorithm of Gaur, Ibaraki and
Krishnamurti [4]. To avoid confusion, we refer to the latter as the GIK algorithm.

2.1 The Algorithm

To simplify the presentation, we assume that the subsets S, ...,.5,, are indexed ac-

cording to O in advance. In addition, for each element e € U we denote by [f < r§{ <

-+ < f < r{ the endpoints of the blocks that cover e, that is, the collection of subsets
Ty

that contain e is Uf,l (U; 2 {Si}. Using this notation, the set cover problem can be
. Ut
formulated as an integer program by:

(SC) min i CiT;
i=1

k Ty
st (1) Y S a>1 VeeU

t=14i=1¢

(2) x; €{0,1} Vi=1,...,m

In this formulation, the variable x; indicates whether the subset .S; is picked for the
cover, and constraint (1) ensures that for each element e € U we pick at least one

! Although our algorithm follows the general framework of rounding to an integral program, we
defer its description to the full version of this paper.

48 R. Hassin and D. Segev

subset that covers it. The LP-relaxation of this integer program, (SC), is obtained
by replacing the integrality constraint (2) with z; > 0, as the upper bound on z; is
redundant.

We first solve the linear program (SC) to obtain an optimal fractional solution
x*. Next, we use this solution to identify for each element e € U a special set of
blocks. Specifically, we apply threshold rounding to define for each e € U the set

* __ . Ty * 1 :
I = {t : Zi:lg x; > 1 r- Based on these sets, we construct a new linear program

(5C7%) min Y. ¢

=1

s.t. 1 2%21 VeeU, tel!

(1)

i=lg
(2) ;>0 Vi=1,...,m
and solve it to obtain an optimal solution Z.

In Lemma 1 we show that every feasible solution to (SC;Z) is also a feasible solution
to (SCy). We also observe that & is an extreme point of an integral polyhedron, and
therefore it is indeed a feasible solution to (SC'). In Theorem 2 we show that z* can
be fitted into (S C}) when it is scaled by a factor of k. It follows that the cost of & is at
most k times the cost of 2*, which is a lower bound on the cost of any solution to the

set cover problem.
Lemma 1. 7 is a feasible solution to (SC).

Proof. We first show that every feasible solution to (SC%) is also a feasible solution
to (SCy). Let w’ be a feasible solution to (SC7). As 2’ is non-negative, it remains to
prove S, Zl ;¢ ;. > 1 for every e € U. Consider some element e. Since 2™ is
a feasible solution to (SCy), 325, Zl ;¢ @7 = 1, and there is an index s for which
Zz e xy > l It follows that s € I; and the linear program (SC7) contains the
constraint Z 24e @i > 1. Therefore, Zt 1 ZL 1¢ x} > Z:ilg xp > 1.

In addition, the rows of the coefficient matrix in (S C’;) have the interval property,
that is, each row contains a single interval of consecutive 1’s. Such a matrix is to-

tally unimodular, and the extreme points of the set of feasible solutions to (SC7) are
integral. n

Theorem 2. The cost of & is at most k - OPT(SCY).

Proof. To bound the cost of &, we claim that kx* is feasible for (SC;). Consider an
element e € U and an index s € I}. Then Z::l kzf =k Z;il xf > 1, where the
last inequality holds since Z;: e T} 2> % We conclude that

icmgi (ka} —chl z; = k- OPT(SCy) .
i=1 =1

Rounding to an Integral Program 49

Two remarks are in place. First, the above analysis shows that an alternative way
to construct the sets I} is to pick for each such set an arbitrary index ¢ for which
Z:;; x; > % Second, our algorithm can be easily adapted to obtain a similar ap-
proximation ratio for the MULTICOVER problem. In this generalization of set cover,
each element e € U has an integer coverage requirement r., and we are allowed to pick
multiple copies of the subsets in S.

2.2 Application: Multi-Radius Cover

We first formulate multi-radius cover as a set cover problem. Our formulation is based
on the observation that when we transmit to radius r; from the station located at v,
we cover all demand points on the edges adjacent to v that are within distance of at
most 7Y from v. Therefore, from each v € N(v) we must transmit to radius at least
lu,n — 77. This enables us to hide the actual lengths of edges and radii by using the
indexing scheme suggested in [7] as follows.

Foreveryv € V,i =0,...,k, and u € N(v), we define I} (i) = min{j : v} >
luw — 77} if there exists some 0 < j < k,, such that r}} > [, , — 77, and IY(i) = o0
otherwise. Note that if we transmit from v to radius 7], we must transmit from u to
radius at least rﬁ% (i)- In addition, when I’ (i) = oo we cannot transmit from v to radius
r7. Using this notation, multi-radius cover can be formulated as set cover by:

kv
(MRC) min = Y > by Ty

veV i=0
ky
st (1) Yz >1 VveV
i=0
k k .
X % YoeV,i=0,...,k
2 Ty j + Ty =1) AR
() j:]lzz(i) »J]_;"_1 J u e N(U)
(3) z,,;€{0,1} YoeV,i=0,...,k,

The variable x,,; indicates whether we transmit to radius =} from v. Constraint (1)
ensures that we choose at least one radius for each vertex. Constraint (2) ensures that
we either transmit from v to radius at least r{, ; or transmit from u € N (v) to radius at
least rﬁi (i)

Each row of the coefficient matrix in (M RC') contains at most two blocks according
to the following order of the variables:

0 = Tyq,05 Log,1y «++» xvl,k“l7 coey Loy ,05 Lug,ly -0 xvn,kvn

Therefore, using the algorithm for set cover with blocks, we construct a feasible solu-
tion whose cost is at most 2 - OPT(M RCY), where (M RCY) is the LP-relaxation of
(MRC).

2.3 Application: Rectangle Stabbing

Let H = {hy,...,hjg} and V = {v1,..., vy} be the sets of horizontal and vertical
lines, respectively. For each rectangle r; € R, we denote by H, and V}, the subsets of

50 R. Hassin and D. Segev

horizontal and vertical lines that intersect r. The rectangle stabbing problem can be
formulated as an integer program by:

(RS) min > wlhi)z, + >, w(vj)y;

hi€H v eV
st. (1) oo+ > oy >1 Vk=1,...,n
h;€Hy, ’UjEVk
(2) =z, y; €{0,1} Vi=1,...,|H|,j=1,...,|V]

The variable x; indicates whether the horizontal line h; is chosen, and the variable y;
indicates whether the vertical line v; is chosen. Constraint (1) ensures that for each
rectangle 7, we choose at least one line that intersects it. We denote by (RS) the LP-
relaxation of (R.S), in which the integrality constraint (2) is replaced with ; > 0 and
y; = 0.

The GIK algorithm can be summarized as follows. We first solve the linear program
(RSy) to obtain an optimal fractional solution (z*,3*). Using this solution, we define
two subsets of rectangles, Ry = {ry, € R: Y., oy ¢; > 5t and Ry = {ry € R :
Evj v Ui 2 %} We now solve to optimality the problem of covering all rectangles
in Ry using horizontal lines and the problem of covering all rectangles in Ry using
vertical lines. These problems can be formulated as linear programs that have integral
optimal solutions:

(RSH) min w(h;)x;
h;,€H
S.t. (1) Z ;> 1 Vrr € Ry
h;€Hy,
(2) ;>0 Vi=1,...,|H|
(RSv) min va(vj)yj
v €
st. (1) > oy >1 Vry € Ry
v; EVi
(2) y; =20 Vi=1,...,|V]

We show that the GIK algorithm is a special case of the set cover with blocks al-
gorithm, that exploits additional structure of the problem. Each row of the coefficient
matrix in (RS) contains at most two blocks according to the order

O = 21, T2, .-y TH|, Y15 Y25 -5 YV

of the variables, where we assume that the lines in H and V' are indexed in increasing
order of coordinates. In addition, each block is contained either in 1, ...,z or in
Y1, - Yvy-

Given (RS), the set cover algorithm uses the optimal fractional solution (z*,y*) to
identify for each rectangle 7, at least one block from which a line will be subsequently
chosen. The rule applied by the algorithm guarantees that a block {z; : h; € Hj} is
chosen if and only if 7, € Ry in the GIK algorithm, and similarly, a block {y; : v; €
V. } is chosen if and only if r;, € Ry . This observation implies that in the second stage
the algorithm constructs the linear program

Rounding to an Integral Program 51

(RS?) min > wlhi)zi+ Y, w(v))y;

h,€H ’UjGV
s.t. (1) >ooap>1 Vrr € Ry
h;€Hy,
(2) Z y; > 1 Vre € Ry
’UjEVk
(3) =z, y; >0 Vi=1,...,|H|,j=1,...,|V]

and returns its optimal solution, which is integral. However, this linear program is sep-
arable with respect to « and y. Moreover, OPT(RS}) = OPT(RSy) + OPT(RSy),
since (RS%) decomposes exactly to (RSy) and (RSy).

We remark that the set cover with blocks algorithm can be used to obtain a d-
approximation for the problem of stabbing rectangles in R? using hyperplanes. In addi-
tion, a cd-approximation can be obtained for the problem of stabbing compact sets with
at most ¢ connected components in R?.

3 Group Cut with Consecutive Groups

In what follows we consider the case where the vertices of each group appear consec-
utively on the path. We assume that the left-to-right order of the vertices on P is given
by v1, ..., v,, and denote by [v;, v;] the subpath connecting v; and v;.

We first discuss the hardness of approximating GCP with consecutive groups, and
prove that this problem is at least as hard to approximate as vertex cover. We then
present a 3-approximation algorithm, that is surprisingly based on an incorrect integer
program.

3.1 Hardness Results

In Lemma 3 we describe an approximation preserving reduction from the vertex cover
problem to GCP with consecutive groups. It follows that hardness results regarding
vertex cover extend to this special case of GCP, and in particular it is NP-hard to ap-
proximate the latter problem to within any factor smaller than 1.3606 [3].

Lemma 3. A polynomial time «-approximation algorithm for GCP with consecutive
groups would imply a polynomial time a-approximation algorithm for vertex cover.

Proof. Given a vertex cover instance I, with a graph G = (V, E)) whose set of vertices
is V.= {uy,...,u,}, we construct an instance p(I) of GCP with consecutive groups
as follows. For each vertex u; € V there is a corresponding edge e; with unit cost,
where the edges ey, ...,e, are vertex-disjoint. We connect these edges to a path in
increasing order of indices, using intermediate edges with cost M = an + 1. For each
edge (u;,u;) € E, i < j, we define the group G;; to be the sequence of vertices that
begins at the left endpoint of e; and terminates at the right endpoint of e;.

Let S* C V be a minimum cardinality vertex cover in G. We show how to find in
polynomial time a vertex cover in G with cardinality at most | S*|, given a polynomial
time a-approximation algorithm for GCP with consecutive groups.

Since S* is a vertex cover, the set of edges {e; : u; € S*} separates either the
leftmost vertex or the rightmost vertex in each group G;; from the other vertices in

52 R. Hassin and D. Segev

that group. It follows that OPT(p(I)) < |S*|, and we can find in polynomial time
a set of edges F' that separates all groups such that ¢(F) < «|S*|. We claim that
S = {u; : e; € F} is a vertex cover in G. Consider some edge (u;, u;) € E. Clearly,
F' cannot separate any vertex in the interior of G;; from the other vertices in G;;, or
otherwise it contains an edge with cost M = an + 1 and ¢(F) > «|S*|. Therefore,
Fn{e,e} # () and S contains at least one of the vertices u; and u;. In addition,
|S] < «|S*| since |S| = |F| = ¢(F). O

3.2 A 3-Approximation Algorithm

Let L; and R; be the indices of the leftmost and rightmost vertices of the group G;,
respectively. We formulate GCP with consecutive groups as an integer program using

two types of variables. For j = 1,...,n — 1, the variable z; indicates whether we
disconnect the edge (v;,v;41). For j =2,...,n — 1, the variable y; indicates whether
we disconnect both (vj_1,v;) and (v, v;41). Consider the following integer program:

n—1 n—1
(GCP) min _Zl Cjj+17T5 + Z:Q(ijl’j +¢,j+1)¥i
1= 1=

R;

st. (1) o, +ap_1+ >y >1 Vi=1,...,k
J=L;

(2) xj,y; €{0,1} Vi=1,...,n

Clearly, constraint (1) ensures that the collection of edges we should pick, according to
the interpretation of the variables, separates all groups?.

It appears as if we made a mistake by choosing the objective function in (GCP).
This follows from the observation that a single edge (v;,v;41) can play three roles
simultaneously: When x; = 1, it separates v; as a leftmost vertex or v; as a rightmost
vertex; when y; = 1, along with (vj_l, vj) it separates v; as a middle vertex; when
yj+1 = 1, along with (v;41,v;42) it separates v;41 as a middle vertex. Therefore, by
separately considering each group G; and adjusting the variables in (GC P) according
to their roles, we might end up paying the cost of each edge several times.

Let F'* be a minimum cost set of edges that separates all groups. In Lemma 4 we
resolve the problem described above, by suggesting a way to distribute the cost of F'™*
between the variables in (GC P), such that we obtain a feasible solution with an identi-
cal cost.

Lemma 4. There is a feasible solution to (GC P) whose cost is at most ¢(F™).

An important observation is that (GCP) is an integer programming formulation of
a certain set cover problem, in which we are required to cover the groups G, ..., Gy
using single edges and pairs of adjacent edges. We now use the set cover with blocks
algorithm, not before we notice that the subsets covering each group form at most three
blocks according to the following order of the variables:

0 = L1y X2y «-vy Tn—15 Y2, Y3, - -+ Yn—1 -

% For groups G; such that L; = 1, we begin the summation Zf:"Li y; at j = 2. In addition,
when R; = n we end this summation at j = n — 1.

Rounding to an Integral Program 53

By Theorem 2 and Lemma 4, we obtain a feasible solution (&,%) whose cost is at
most 3¢(F™*). This solution can be translated to a set of edges that separates all groups
without increasing its cost, since now the fact that in (GC P) we might pay the cost of
each edge several times works in our favor.

Theorem 5. There is a 3-approximation algorithm for GCP with consecutive groups.

4 Feasible Cut

In this section we present a d-approximation algorithm for a special case of the feasible
cut problem, in which the cardinality of each commodity is at most d. This algorithm is
based on an LP-relaxation that was originally suggested by Yu and Cheriyan [12].

The feasible cut problem can be formulated as an integer program by:

(FC) min > Cupup

(u,w)EE
2 Y pw=>1 Vi=1,...,k
veES;
> —
(3) x’Uav - yu yv V(U, U) c E

LTy, Z Yv — Yu
(4) Yo, Ty € {0,1} Vv eV, (u,v) € E

In this formulation, the variable y,, indicates whether the vertex v belongs to the side of
the cut that does not contain v*, and the variable z,, ,, indicates whether the edge (u, v)
crosses the cut. Constraint (2) ensures that we separate from v* at least one vertex from
each commodity. Constraint (3) ensures that z,, , = 1 when (u, v) crosses the cut. Let
(F'Cy) be the LP-relaxation of (F'C'), in which constraint (4) is replaced with ¢, > 0
and x, , > 0.

Let (z*,y*) be an optimal fractional solution to (F'C'y). We determine in advance a
subset of vertices V;* C S; to be separated from v*. These are vertices a large fraction
of which is separated from v* iny*, V;* = {v € S; : y; > L }. We now construct a new
linear program,

(FCF) min > CuvTuw

(u,v)EE
s.t. (1) yu==0
(2) yo=>1 Vv e Ule %
(3) x’u. ,U > yu y'u
Tuw 2 Yo — Yu V(uv) € E
(4) Yvy Luw >0 Vo eV, (U,U)GE

and solve it to obtain an optimal solution (Z,). Without loss of generality, we assume
that g, < 1 for every v € V, since this property can be achieved without increasing the
cost of the solution.

Since y, > 1 in constraint (2) can be replaced by y, = 1, (F'C}) is the LP-

relaxation of the problem of finding a minimum cut that separates v* and Ule Vi

54

R. Hassin and D. Segev

Therefore, (£,) is integral. In Theorem 6 we show that this solution is indeed a feasible
cut, with cost of at most d times the cost of the optimal solution to (F'CY).

Theorem 6. (Z,9) is afeasible solution to (F'C), and its cost is at most d-OPT(FCYy).

References

1.

2.

[}

10.

11.

12.

R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2:198-203, 1981.

D. Bertsimas, C. P. Teo, and R. Vohra. On dependent randomized rounding algorithms.
Operations Research Letters, 24:105-114, 1999.

. L. Dinur and S. Safra. The importance of being biased. In Proceedings of the 34th Annual

ACM Symposium on Theory of Computing, pages 33-42, 2002.

. D.R. Gaur, T. Ibaraki, and R. Krishnamurti. Constant ratio approximation algorithms for the

rectangle stabbing problem and the rectilinear partitioning problem. Journal of Algorithms,
43:138-152, 2002.

. P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical

mapping of DNA. Journal of Computational Biology, 2:139-152, 1995.

. R. Hassin and N. Megiddo. Approximation algorithms for hitting objects with straight lines.

Discrete Applied Mathematics, 30:29-42, 1991.

. R. Hassin and D. Segev. The multi-radius cover problem, 2004.
. R. Hassin and D. Segev. The set cover with pairs problem, 2005.
. D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems.

SIAM Journal on Computing, 11:555-556, 1982.

D. S. Hochbaum. Instant recognition of half integrality and 2-approximations. In Pro-
ceedings of the 3rd International Workshop on Approximation Algorithms for Combinatorial
Optimization, pages 99-110, 1998.

S. Kovaleva and F. C. R. Spieksma. Approximation of rectangle stabbing and interval stab-
bing problems. In Proceedings of the 12th Annual European Symposium on Algorithms,
pages 426435, 2004.

B. Yu and J. Cheriyan. Approximation algorithms for feasible cut and multicut problems. In
Proceedings of the 3rd Annual European Symposion on Algorithms, pages 394—408, 1995.

Rectangle Covers Revisited Computationally

L. Heinrich-Litan and M.E. Liibbecke2

! Technische Universitit Braunschweig,
Institut fiir Mathematische Optimierung,
Pockelsstrafie 14, D-38106 Braunschweig, Germany
litan@tu-bs.de
2 Technische Universitit Berlin,

Institut fir Mathematik, Sekr. MA 6-1, Strafle des
17. Juni 136, D-10623 Berlin, Germany
m.luebbecke@math.tu-berlin.de

Abstract. We consider the problem of covering an orthogonal polygon
with a minimum number of axis-parallel rectangles from a computational
point of view. We propose an integer program which is the first gen-
eral approach to obtain provably optimal solutions to this well-studied
NP-hard problem. It applies to common variants like covering only the
corners or the boundary of the polygon, and also to the weighted case.
In experiments it turns out that the linear programming relaxation is
extremely tight, and rounding a fractional solution is an immediate high
quality heuristic. We obtain excellent experimental results for polygons
originating from VLSI design, fax data sheets, black and white images,
and for random instances. Making use of the dual linear program, we
propose a stronger lower bound on the optimum, namely the cardinality
of a fractional stable set. We outline ideas how to make use of this bound
in primal-dual based algorithms. We give partial results which make us
believe that our proposals have a strong potential to settle the main open
problem in the area: To find a constant factor approximation algorithm
for the rectangle cover problem.

1 Introduction

A polygon with all edges either horizontal or vertical is called orthogonal. Given
an orthogonal polygon P, the rectangle cover problem is to find a minimum
number of possibly overlapping axis-parallel rectangles whose union is exactly P.
In computational geometry, this problem received considerable attention in the
past 25 years, in particular with respect to its complexity and approximability
in a number of variants. Still, the intriguing main open question [5] is:

Is there a constant factor approximation algorithm for the rectangle
cover problem?

We do not answer this question now, but we offer a different and new kind of
reply, which is “computationally, yes”. In fact, we provide a fresh experimental

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 55-66, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

56 L. Heinrich-Litan and M.E. Liibbecke

view, the first of its kind, on the problem which has applications in the fabrication
of masks in the design of DNA chip arrays [11], in VLSI design, and in data
compression, in particular in image compression.

Previous work. Customarily, one thinks of the polygon P as a union of finitely
many (combinatorial) pixels, sometimes also called a polyomino. The polygon
P can be associated with a visibility graph G [15,17,18,20]: The vertex set of
G is the set of pixels of P and two vertices are adjacent in G if and only if their
associated pixels can be covered by a common rectangle. Rectangles correspond
to cliques in G. That is a set of vertices, any two of which are adjacent. Let 0
denote the number of rectangles in an optimal cover. An obvious lower bound on
0 is the size a of a maximum stable set in G, also called maximum independent
set. This is a set of pixels, no two of which are contained in a common rectangle.
In the literature one also finds the notion of an antirectangle set.

Chvatal originally conjectured that o = 6, and this is true for convex poly-
gons [6] and a number of special cases. Szemerédi gave an example with 6 # «,
see Figure 1. Intimately related to the initially stated open question, Erdés then
asked whether §/a was bounded by a constant. In [6] an example is mentioned
with /a > 21/17 — ¢, however, this example cannot be reconstructed from [6],
and thus cannot be verified. The best proven bound is /o > 8/7.

For polygons with holes and even for those without holes (also called simple)
the rectangle cover problem is NP-hard [16,7] and MaxSA P-hard [4], that
is, there is no polynomial time approximation scheme. The best approximation
algorithms known achieve a factor of O(y/logn) for general polygons [1] and
a factor of 2 for simple polygons [8], where n is the number of edges of the
polygon. Because of the problem’s hardness quite some research efforts have
gone into finding polynomially solvable special cases; we mention only covering
with squares [2,14] and polygons in general position [5]. Interestingly, there is
a polynomial time algorithm for partitioning a polygon into non-overlapping
rectangles [19]. However, a polygon similar to Fig. 3 shows that an optimal
partition size may exceed an optimal cover size by more than constant factor,
so this does not lead to an approximation.

Our Contributions. Despite its theoretical hardness, we demonstrate the rectan-
gle cover problem to be computationally very tractable, in particular by studying
an integer programming formulation of the problem. Doing this, we are the first
to offer an exact (of course non-polynomial time) algorithm to obtain provably
optimal solutions, and we are the first to introduce linear/integer programming
techniques in this problem area. Based on a fractional solution to the (dual of
the) linear programming relaxation we propose a stronger lower bound on the
optimum cover size which we call the fractional stable set size. In fact, this new
lower bound motivates us to pursue previously unexplored research directions to
find a constant factor approximation algorithm. These are the celebrated primal-
dual scheme [9], rounding a fractional solution, and a dual fitting algorithm [21].
We are optimistic that our research will actually contribute to a positive answer
to the initially stated long standing open question, and due to space limitations

Rectangle Covers Revisited Computationally 57

we only sketch some partial results and promising ideas. A fruitful contribution
of our work is a number of open questions it spawns.

Preliminaries. Since we are dealing with a combinatorial problem, we identify
P with its set of combinatorial pixels. This way we write p € P to state that
pixel p is contained in polygon P. Let R denote the set of all rectangles in P. It
is important that we only count rectangles and do not consider areas. Thus, it
is no loss of generality to restrict attention to inclusionwise maximal rectangles.
We will do so in the following without further reference. The number of these
rectangles can still be quadratic in the number n of edges of P [8], see also Fig. 2.

2 An Integer Program

Interpreting rectangles as cliques in G we can make use of the standard integer
programming formulation for the minimum clique cover problem in graphs [20].
A binary variable x, indicates whether rectangle r € R is chosen in the cover or
not. For every pixel p € P at least one rectangle which covers p has to be picked,
and the number of picked rectangles has to be minimized:

6 = min Z Xy (1)

reR
s. t. Z x> 1 peP (2)
reR:rSp
z. € {0,1} reR (3)

This integer program (which we call the primal program) allows us to optimally
solve any given instance of our problem, and we will do so in our experiments.
When we replace (3) by x, > 0,7 € R (3'), we obtain the associated linear pro-
gramming (LP) relaxation. There is no need to explicitly require x,, < 1, r € R,
since we are minimizing. We call the optimal objective function value of the LP
relaxation the fractional cover size of P and denote it by . Clearly, it holds that
6 < 6. In general, no polynomial time algorithm is known to compute the frac-
tional clique cover number of a graph, that is, for solving this linear program [20].
In our case, however, the number of variables and constraints is polynomial in
n, in fact quadratic, due to the fact that we work with maximal rectangles only.
Therefore, the fractional cover size can be computed in polynomial time.

This integer program immediately generalizes to the weighted rectangle cover
problem, where rectangles need not have unit cost. It is straightforward, and it
does not increase the complexity, to restrict the coverage requirement to partic-
ular features of the polygon like the corners or the boundary—two well-studied
variants [4] for which no exact algorithm was known. It is also no coincidence
that a formal dualization of our program leads to a formulation for the dual
problem of finding a maximum stable set. A binary variable y,, p € P, reflects
whether a pixel is chosen in the stable set or not. We have to require that no
rectangle contains more than one of the chosen pixels, and we maximize the
number of chosen pixels. We call this the dual integer program:

58 L. Heinrich-Litan and M.E. Liibbecke

o = max Z Yp (4)

peP
s. t. Z yp < 1 reR (5)
pEP:pET
yp € {0,1} pePr (6)

Again, when replacing (6) by y, > 0,p € P (6'), we obtain the associated LP
relaxation. We call its optimal objective function value & the fractional stable
set size of P. We refer to a feasible solution to the dual as a fractional stable set.
It holds that & > «. By strong linear programming duality we have @ = 0. We
stress again the fact that we distinguish between the (primal and dual) integer
programs which solve the problems exactly, and their respective continuous lin-
ear programming relaxations, which give bounds. In general, optimal solutions
to both linear programs (1)—(3) and (4)—(6") are fractional. However, using an
interesting link to graph theory, in the case that G is perfect [10], optimal solu-
tions are automatically integer because of a strong duality between the integer
programs [20]. This link was established already early, see e.g., [3,17,18], and our
linear programs give optimal integer covers in polynomial time for this important
class of polygons with o = 6.

2.1 About Fractional Solutions

Our computational experiments fuel our intuition; therefore we discuss some
observations first. In linear programming based approximation algorithms the
objective function value of a primal or dual fractional solution is used as a lower
bound on the integer optimum. The more we learn about such fractional solutions
the more tools we may have to analyze the problem’s approximability.

General Observations. The linear relaxations (1)—(3') and (4)—(6') appear to be
easily solvable to optimality in a few seconds on a standard PC. The vast ma-
jority of variables already assumes an integer value. A mere rounding of the
remaining fractional variables typically gives an optimal or near-optimal integer
solution (e.g., instance night is a bad example with “only” 95% integer val-
ues, but the rounded solution is optimal). For smaller random polygons the LP
optimal solution is very often already integer; and this is an excellent quality
practical heuristic, though memory expensive for very large instances.

Odd Holes. Figure 1 (left) shows Szemerédi’s counterexample to the a = 6
conjecture. The 5 rectangles indicated by the shaded parts have to be in any
cover. In the remaining parts of the polygon, there are 5 pixels which induce an
odd-length cycle C' (“odd hole”) in the visibility graph G. To cover these pixels,
at least 3 rectangles are needed, implying 8 > 8. On the other hand, at most 2
of these pixels can be independent, that is, o < 7. The odd hole C is precisely
the reason why G is not perfect in this example. Figure 1 (right) shows that
C is encoded in the optimal fractional solution as well: Exactly the variables
corresponding to edges of C' assume a value of 0.5. The same figure shows an

Rectangle Covers Revisited Computationally 59

:l °)
[] .

Fig. 1. The original counterexample to a = 6 by Szemerédi and (to the right) an

optimal fractional cover. Thicker lines (points) indicate rectangles (pixels) which are
picked to the extent of 0.5

optimal fractional stable set. Pixels corresponding to vertices of C' assume a
value of 0.5 (drawn fatter in the figure). That is, @ = § = 7.5. This immediately
suggests to strengthen the LP relaxation.

Lemma 1. For any induced odd cycle C with |C| > 5, the inequality) . xp >
[1C|/2] is valid for (1)—(3), where r € C' denotes the rectangles corresponding
to the edges of C.

The graph theoretic complements of odd holes are called odd antiholes. A
graph is not perfect either if it contains an induced odd antihole. However,
we can prove that there is no way of representing even the simplest non-trivial
antihole with 7 vertices in a rectangle visibility graph. Odd holes are therefore the
only reason for imperfection. Unfortunately still, from our experiments, arbitrary
fractions are possible, not only halves, and simply rounding a fractional solution
does not give a constant factor approximation, as discussed next.

High Coverage. We define the coverage of a pixel p as the number of rectangles
which contain p. For the classical set cover problem, rounding up an optimal frac-
tional solution gives an f-approximate cover, where f is the maximum coverage
of any element. In general, a pixel can have more than constant coverage; even
worse, almost no pixel may have constant coverage; even in an optimal cover of
a simple polygon in general position pixels may have high coverage (see Fig. 2).
Unlike in the general set cover case, high coverage is no prediction about the
fractions in an optimal LP solution: In Fig. 2 there are no fractional variables,
the solution is integer. The fractional (indeed integer) optimal solution to this
simple example has a remarkable property. Every rectangle in the optimal cover
contains pixels of low coverage. More precisely, the following holds.

Lemma 2. In an optimal cover C, every rectangle r € C contains a pixel which
is uniquely covered by r.

This can be easily seen since otherwise C \ {r} would be a cover, contradicting
the optimality of C. We call these uniquely covered pixels private. It is no coin-
cidence that the pixels in a maximal stable set are private. It is natural to ask

60 L. Heinrich-Litan and M.E. Liibbecke

Fig. 2. Left: The shaded center pixel is covered by any maximal rectangle; almost all
pixels have non-constant coverage. In an optimal cover, the coverage of the center pixel
is linear in the cover size. The right figure schematically shows a minimal cover and a
maximal stable set

(since an answer immediately turns LP rounding into a constant factor approx-
imation algorithm): What are the characteristics of polygons where every pixel
has only constant coverage? What kind of polygons have “many” pixels with
“low” coverage? How can we exploit Lemma 27 These questions are intimately
related to the next section.

3 LP Based Approximation

There are more elaborate linear programming based approaches to constant
factor approximation algorithms. They can be used as analytical tools to theo-
retically sustain our excellent computational results.

3.1 Primal-Dual Scheme

The primal-dual scheme [9] builds on relaxing the well-known complementary
slackness optimality conditions [20] in linear programming. The general scheme
iteratively improves an initially infeasible integer primal solution, that is, a set
of rectangles, to finally obtain a feasible cover. The improvement step is guided
by a feasible fractional dual solution, that is a fractional stable set, which is
improved in alternation with the primal solution. The relaxed complementary
slackness conditions contain the key information. In our case they read

. >0 =

< Z Yp reRk (7)

pEP:pET

IS

for some constant d, and

yYp >0 = Z z<c peP (8)
reR:rSp

Rectangle Covers Revisited Computationally 61

for some constant c. First note that if a possibly infeasible primal integer solution
is maintained, x, > 0 means x, = 1. An interpretation of condition (7) is that
every rectangle in the constructed cover must cover at least 1/d pixels from the
fractional stable set. Condition (8) states that a pixel in the fractional stable set
must not be contained in more than ¢ rectangles (regardless of whether in the
cover or not).

We found two cases where we can compute a cover and a fractional stable
set simultaneously such that the two conditions hold. Thin polygons, as unions
of width 1 or height 1 rectangles, are a class of polygons amenable to LP round-
ing and the primal-dual scheme: Since no pixel is covered by more than two
rectangles this gives a 2-approximation. More generally, polygons of bounded
width (every pixel contains a boundary pixel in its “neighborhood”) are a new
non-trivial class which allows a constant factor approximation.

3.2 Dual Fitting

Since o < 6 the former natural approach to approximation algorithms was to
construct a large stable set usable as a good lower bound [8]. Since o < @
we propose to use the stronger bound provided by a fractional stable set. Our
dual fitting approach [21] is to simultaneously construct a cover C C R and an
pseudo stable set S C P of pixels with |C| < |S| (we say that S pays for C).
“Pseudo” refers to allowing a constant number ¢ of pixels in a rectangle, that is,
we relax (5) to > p..c, Yp < . From this constraint we see that picking each
pixel in S to the extent of 1/c¢ (which is a division of all y,, variables’ values by
c¢) gives a feasible fractional solution to our dual linear program. A cover with
these properties has a cost of

Cl<|S|<ca=c-0<c-0, (9)

that is, it would yield a c-approximation. Actually, one does not have to require
that S pays for the full cover but £|C| < |S| for a constant d suffices, which would
imply a (c - d)-approximation. This paying for a constant fraction of the primal
solution only is a new proposal in the context of dual fitting. Here again, the
question is how to guarantee our conditions in general. From a computational
point of view, we obtain encouraging results which suggest that our proposal can
be developed into a proven constant factor approximation. In the next section
we sketch some ideas how this can be done.

4 Towards a Constant Factor Approximation

4.1 Obligatory Rectangles and Greedy

For set cover, the greedy algorithm yields the best possible approximation fac-
tor of O(logn). The strategy is to iteratively pick a rectangle which covers the
most yet uncovered pixels. One expects that for our particular problem, the
performance guarantee can be improved. Computationally, we answer strictly

62 L. Heinrich-Litan and M.E. Liibbecke

in the affirmative. Again, our contribution is the dual point of view. It is our
aim to design an algorithm which is based on the dual fitting idea of Sec-
tion 3.2, and we mainly have to say how to construct a feasible dual fractional
solution.

We use some terminology from [11]. Certain rectangles have to be in any
cover. A prime rectangle contains a pixel which is not contained in any other
rectangle. Such a pixel is called a leaf. Every cover must contain all prime rect-
angles. For a given pixel p we may extend horizontally and vertically until we
hit the boundary; the rectangular area R(p) defined by the corresponding edges
at the boundary is called the extended rectangle of p. R(p) might not be en-
tirely contained in the polygon but if so, it is a prime rectangle [11]. Moreover,
let C" C C be a subset of some optimal cover C. If there is a rectangle r which
contains (P \ C') N R(p) for some extended rectangle R(p), then there is an op-
timal cover which contains C’ and r [11]. In this context, let us call rectangle r
quasi-prime and pixel p a quasi-leaf. The algorithm we use to compute a cover
is a slight extension of [11], but we will provide a new interpretation, and more
importantly, a dual counterpart:

QUASI-GREEDY

1. pick all prime rectangles

2. pick a maximal set of quasi-prime rectangles

3. cover the remaining pixels with the greedy algorithm
4. remove redundant rectangles (“pruning”)

It has not been observed before that a set of leafs and quasi-leafs forms a
stable set. This leads to the idea to compute a pseudo stable set containing a
maximal set of leafs and quasi-leafs. Thus, in order to build a pseudo stable set
we check for every rectangle in the greedy cover whether it contains

1. a leaf
2. a quasi-leaf
3. a corner pixel

The first positive test gives a pixel which we add to the pseudo stable set.
A corner pizel is a corner of a rectangle which is private and a corner of the
polygon. We already observed that pixels from steps 1 and 2 are independent.
Furthermore, any rectangle obviously contains at most 4 corner pixels, and since
corner pixels are private, actually at most 2 of them. By our previous consider-
ations, this would imply a 2-approximation if the constructed pseudo stable set
would pay for the whole cover. In general, we found this not to be true. We have
constructed examples which suggest that one cannot guarantee that a constant
fraction of the cover has been paid for. To achieve this latter goal one has to add
more pixels to the pseudo stable set. To this end we extend the above test and
also check for every rectangle in the cover whether it contains

4. a border pixel.

A border pizel p is private and adjacent to a non-polygon pixel p (the outer
face or a hole). The row (or column) of pixels which contains p, which is adjacent

Rectangle Covers Revisited Computationally 63

to P, and which extends to the left and the right (to the top and the bottom)
until some non-polygon pixel is hit must not be adjacent to a different hole (or
the outer face) other than the hole (or the outer face) the pixel p corresponds
to. Also these pixels have a natural motivation.

Let us furthermore remark that after the pruning step in QUASI-GREEDY,
every rectangle in the cover contains a private pixel (Lem. 2). This pixel is
an intuitive candidate to become a pixel in a pseudo stable set. This set would
actually pay for the whole cover. However, it is not clear whether one can control
how many pixels of this set can be contained in the same rectangle.

4.2 Using Boundary Covers

There is a simple 4-approximation algorithm for covering the boundary of an
orthogonal polygon [4]. In this context a natural question arises: Can we always
find an interior cover whose size is bounded from above by a constant multiple
of the size Ohoundary Of an optimal boundary cover? The answer is “no”. Our
counterexample in Fig. 3 shows that there is an O (y/n)-cover of the boundary
of the polygon in the left figure with maximal horizontal and vertical strips.
But the optimal interior cover needs ©(n) rectangles since the white uncovered
pixels in the right figure are independent. Nevertheless, the latter observation is
actually very encouraging. We conjecture that one can find an interior cover of
size less than ci - Opoundary +C2 - @ Where ¢; are ¢y are appropriate constants. This
would imply a constant factor approximation for the rectangle cover problem.

IO
1
[T [TOC

Fig. 3. A boundary cover may leave a non-constant fraction of pixels uncovered

4.3 Quasi-Prime Rectangles and Breaking Holes

There is a large class of polygons (e.g., polygons resulting from typical oligonu-
cleotide masks [11]) where the optimal cover is found after the first two steps
of the QUASI-GREEDY algorithm in Section 4.1. Then the cover consists of only
prime and quasi-prime rectangles. This is of course in general not the case (see
Fig. 1). Now, consider the set U of pixels remained uncovered after step 2. We
can prove that there is an induced cycle (a hole) in G whose vertices correspond
to a subset of U. Covering each second edge of this hole extends the previous
partial cover. We call this covering step to “break a hole”. A straightforward

64 L. Heinrich-Litan and M.E. Liibbecke

algorithm is the following: while the polygon is uncovered, iteratively pick a
maximal set of quasi-prime rectangles, then find a hole and break it. We can
iteratively extend also the partial pseudo stable set. The quasi-prime rectangles
are paid for by quasi-leafs, which form a stable set. The rectangles which break
an even (odd) hole can all (but one) be paid for by a stable set, too.

We have experimented with related and extended ideas based on the obser-
vations sketched in Sections 4.2 and 4.3 and obtained encouraging results. These
methods and their approximation potential are currently under investigation.

5 Computational Experience

We experimented with small polygons occurring in VLSI mask design (instances
VLSI*), a set of standard fax images! (instances ccitt*), and several black and
white images (instances marbles, mickey, ...). Further, we have two strategies
to construct random polygons. The first is to eliminate a varying fraction of
single pixels uniformly from a square of size up to 750 x 750 pixels. The second
is a union of uniformly placed rectangles of random sizes.

Table 1. Results for the primal and dual linear/integer programs. For each instance we
list its size in pixels, its number of pixels (as a fraction), and its number of rectangles.
For the dual and the primal programs (in that order) we give the optimal linear and
integer program objective function values. The ‘LP gap’ is the relative gap between
linear and integer program. Notice that instances mickey and night do not have a
fractional optimal solution with ‘nice’ fractions

instance characteristics dual (stable set size) primal (cover size)
Instance size density rectangles| opt. LP opt. IP LP gap| opt. LP opt. IP LP gap
VLSI1 6835 50.25% 45 43.000 43 0.000% 43.000 43 0.000%
VLSI2 3841x298 95.34% 16694| 4222.667 4221 0.039%| 4222.667 4224 0.032%
VLSI3 148 x135 45.09% 78 71.000 71 0.000% 71.000 71 0.000%

VLSI5 6836x1104 55.17% 192358|77231.167 77227 0.005%|77231.167 77234 0.004%
ccittl 2376x1728 3.79% 27389(14377.000 14377 0.000%[14377.000 14377 0.000%
ccitt2 2376x1728 4.49% 30427| 7422.000 7422 0.000%| 7422.000 7422 0.000%
ccitt3 2376x1728 8.21% 40625|21085.000 21085 0.000%(21085.000 21086 0.005%
ccitt4 2376x1728 12.41% 101930(56901.000 56901 0.000%|56901.000 56901 0.000%
ccitts 2376x1728 7.74% 46773|24738.500 24738 0.002%(24738.500 24739 0.002%
ccitt6 2376x1728 5.04% 30639(12013.000 12013 0.000%(12013.000 12014 0.008%
ccitt?7 2376x1728 8.69% 85569(52502.500 52502 0.001%[52502.500 52508 0.010%
ccitt8 2376x1728 43.02% 41492(14024.500 14022 0.018%|14024.500 14025 0.004%
marbles 1152x813 63.49% 56354(44235.000 44235 0.000%[44235.000 44235 0.000%
mickey 334x280 75.13% 17530| 9129.345 9127 0.026%| 9129.345 9132 0.029%
day 480640 64.63% 45553(32191.000 32190 0.000%(32191.000 32192 0.003%
night 480640 96.02% 17648| 7940.985 7938 0.038%| 7940.985 7943 0.025%

The extremely small integrality gaps listed in Tab. 1 and experienced for
thousands of random polygons (not listed here) are a strong vote for our integer
programming approach. On the downside of it, integer programs for industrial

! Available at http://wuw.cs.waikato.ac.nz/~singlis/ccitt.html

Rectangle Covers Revisited Computationally 65

Table 2. Details for the QUASI-GREEDY algorithm of Section 4.1. We compare the
optimal cover size against ours (they differ by only 3-7%). The following columns list
the number of prime and quasi-prime rectangles, and those picked by the greedy step.
Then, the number of corner and border pixels in the constructed quasi stable set S is
given (the number of (quasi-)leafs equals the number of (quasi-)primes). Finally, we
state the maximal number of pixels of S in some rectangle, and the fraction of the
cover size for which § pays

Instance optimum cover size prime quasi-prime greedy|corner border max pixels pays for
VLSI1 43 43 41 2 0 0 0 1 100.00%
VLSI2 4224 4701 1587 203 2911 1105 1279 4 88.79%
VLSI3 71 71 71 0 0 0 0 1 100.00%
ccittl 14377 14457 10685 2099 1673| 1632 28 2 99.91%
ccitt2 7422 7617 3587 409 3621| 3574 29 3 99.76%
ccittd 21086 21259 15691 2020 3548| 3427 86 3 99.84%
ccittd 56901 57262 42358 8605 6299| 6110 59 2 99.77%
ccitth 24739 24911 18529 2985 3397| 3259 98 2 99.84%
ccitt6 12014 12132 8256 1049 2827 2764 35 2 99.77%
ccitt? 52508 52599 39230 10842 2525| 2448 56 2 99.96%
ccitt8 14025 14303 7840 1353 5110| 5023 54 3 99.77%
marbles 56354 44235 43548 687 0 0 0 1 100.00%
mickey 9132 9523 5582 690 3251 528 1593 3 88.13%
day 32192 32431 26308 3777 2346 749 900 4 97.85%
night 7943 8384 4014 501 3869 762 1810 4 84.53%

size polygons, e.g., from VLSI design are extremely large. The generation of
the integer programs consumes much more time than solving them which takes
typically only a few seconds using the standard solver CPLEX [13]. As a remedy
we propose a column generation approach, that is, a dynamic generation of the
variables of the linear program. This enables us to attack larger instances.

For random instances the relation between the different objective function
values is very similar to Tab. 1 and is not reported separately in this abstract. The
excellent performance of the QQUASI-GREEDY algorithm can be seen in Tab. 2.
We remark that we never observed more than 4 pixels of a pseudo stable set in
a rectangle, and the pseudo stable set pays for significantly more than 50% of
the cover size. This supports that QUASI-GREEDY could be an 8-approximation
algorithm for the rectangle cover problem (see Section 4.1).

6 Conclusions

It is common that theory is complemented by computational experience. In this
paper we did the reverse: We found promising research directions by a careful
study of computational experiments. Finally, we propose:

Restatement of Erdés’ Question. Is it true that both, the integrality gap of our
primal and that of our dual integer program are bounded by a constant? The
example in Fig. 1 places lower bounds on these gaps of /6 > 16/15 and a/a >
15/14, implying the already known bound 6/a > 8/7. We conjecture that these
gaps are in fact tight. Originally, we set out to find an answer to Erdés’ question.
We conclude with an answer in the affirmative, at least computationally.

66

L. Heinrich-Litan and M.E. Liibbecke

Acknowledgments

We thank Sandor Fekete for fruitful discussions and Ulrich Brenner for providing
us with polygon data from the mask fabrication process in VLSI design.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

V.S. Anil Kumar and H. Ramesh. Covering rectilinear polygons with axis-parallel
rectangles. STAM J. Comput., 32(6):1509-1541, 2003.

L.J. Aupperle, H.E. Conn, J.M. Keil, and J. O’Rourke. Covering orthogonal poly-
gons with squares. In Proc. 26th Allerton Conf. Commun. Control Comput., pages
97-106, 1988.

C. Berge, C.C. Chen, V. Chvatal, and C.S. Seow. Combinatorial properties of
polyominoes. Combinatorica, 1:217-224, 1981.

. P. Berman and B. DasGupta. Complexities of efficient solutions of rectilinear

polygon cover problems. Algorithmica, 17(4):331-356, 1997.

M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In
Hochbaum [12], chapter 8, pages 296-345.

S. Chaiken, D.J. Kleitman, M. Saks, and J. Shearer. Covering regions by rectangles.
SIAM J. Algebraic Discrete Methods, 2:394-410, 1981.

J.C. Culberson and R.A. Reckhow. Covering polygons is hard. J. Algorithms,
17:2-44, 1994.

D.S. Franzblau. Performance guarantees on a sweep-line heuristic for covering rec-
tilinear polygons with rectangles. SIAM J. Discrete Math., 2(3):307-321, 1989.
M.X. Goemans and D.P. Williamson. The primal-dual method for approximation
algorithms and it application to network design problems. In Hochbaum [12],
chapter 4.

M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

S. Hannenhalli, E. Hubell, R. Lipshutz, and P.A. Pevzner. Combinatorial algo-
rithms for design of DNA arrays. Adv. Biochem. Eng. Biotechnol., 77:1-19, 2002.
D.S. Hochbaum, editor. Approzimation Algorithms for N'P-Hard Problems. PWS
Publishing Co., Boston, MA, 1996.

ILOG Inc., CPLEX Division. CPLEX 9.0 User’s Manual, 2004.

C. Levcopoulos and J. Gudmundsson. Approximation algorithms for covering poly-
gons with squares and similar problems. In Proceedings of RANDOM’97, volume
1269 of Lect. Notes Comput. Sci., pages 27-41, Berlin, 1997. Springer.

F. Maire. Polyominos and perfect graphs. Inform. Process. Lett., 50(2):57-61,
1994.

W.J. Masek. Some NP-complete set covering problems. Unpublished manuscript,
MIT, 1979.

R. Motwani, A. Raghunathan, and H. Saran. Covering orthogonal polygons with star
polygons: The perfect graph approach. J. Comput. System Sci., 40:19-48, 1989.

R. Motwani, A. Raghunathan, and H. Saran. Perfect graphs and orthogonally
convex covers. SIAM J. Discrete Math., 2:371-392, 1989.

T. Ohtsuki. Minimum dissection of rectilinear regions. In Proc. 1982 IEEE Symp.
on Circuits and Systems, Rome, pages 1210-1213, 1982.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin, 2003.

V.V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.

Don’t Compare Averages

Holger Bast and Ingmar Weber

Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany
{bast, iweber}@mpi-sb.mpg.de

Abstract. We point out that for two sets of measurements, it can hap-
pen that the average of one set is larger than the average of the other
set on one scale, but becomes smaller after a non-linear monotone trans-
formation of the individual measurements. We show that the inclusion
of error bars is no safeguard against this phenomenon. We give a the-
orem, however, that limits the amount of “reversal” that can occur; as
a by-product we get two non-standard one-sided tail estimates for ar-
bitrary random variables which may be of independent interest. Our
findings suggest that in the not infrequent situation where more than
one cost measure makes sense, there is no alternative other than to ex-
plicitly compare averages for each of them, much unlike what is common
practice.

1 Introduction

Fig. 1 shows us a typical performance statistic as we find it in many papers.
For the sake of concreteness, let us assume that the two graphs pertain to two
different numerical algorithms and that it was measured how large the numbers
get in the internal computations. More precisely, the number of bits needed
to represent the largest integer were measured, and each point in the graph is
actually an average taken over a number of problem instances. The fewer bits,

35}

Fig. 1. The light gray algorithm is clearly better than the dark gray one...

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 67-76, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

68 H. Bast and I. Weber

the better of course. Along the z-axis the input size is varied. The message
conveyed by the figure is clear: the “light gray” algorithm performs consistently,
that is for all considered problem sizes, about 10% better than the “dark gray”
algorithm.

Now the cost measure is somewhat arbitrary in the sense that we might as
well have chosen to record the largest integer used and not the number of bits
used to represent it, that is, to consider costs 2¢ instead of costs c. What graph
do we expect then? Well, if on some instance the one algorithm needs 3 bits and
the other 4 bits, the modified costs would be 23 = 8 versus 2* = 16, that is, not
surprisingly the gap between the two becomes larger. Now let us take a look at
the graph for the same data but with the modified cost measure.

Fig. 2. ...or isn’t it?

Indeed, the gap has increased (from 10% to about 30%), but moreover, the
order of the two graphs has changed! How is that possible?

There is, of course, nothing wrong with the figures, which are from authentic
data; details are given in Appendix A. The reason for the reversal is that for
two random variables X and Y, EX < EY does not, in general, imply that
for an (even strictly) increasing function f, Ef(X) < Ef(Y). For a simple
counterexample, consider two runs of our two algorithms above, where the first
algorithm required once 1 and once 5 bits, and the second algorithm required
4 bits twice. Then clearly, on average the first algorithm required one bit less.
Considering the second cost measure, the first algorithm on average required
numbers up to (2! + 2°)/2 = 17, which is one more than the (2% +2%)/2 = 16
required by the second algorithm.

Alternative cost measures are actually quite frequent: to assess the quality
of a language model, for example, both cross-entropy (c¢) and perplexity (2°)
are equally meaningful and both used frequently [1]. Example publications with
comparison graphs (or tables) of the very same kind as in Fig. 1 and 2 are [2] [3]
[4] [1]. To give a concrete numerical example also, one of these papers in one of
their graphs states average perplexities of ~ 3200 and = 2900 for two competing

Don’t Compare Averages 69

methods. This appears to indicate a solid 10%-improvement of the one method
over the other, but first, note that the difference of the logarithms is a mere
1%, and second, these perplexities would also result if, for example, the cross-
entropies were normally distributed with a mean and standard deviation of 11.4
and 0.6, respectively, for the apparently superior method, and 11.3 and 1.0 for
the apparently inferior method; see Appendix A for the calculations concerning
the normal distribution.

But language modeling is just one prominent example. Another frequent sce-
nario is that one (basic) algorithm is used as a subroutine in another (more
complex) algorithm in such a way that the complexity of the latter depends on
the complexity of the former via a non-linear, for example quadratic, function
f- Then, of course, an average complexity of c¢ of the basic algorithm does not
simply translate to an average complexity of f(c) of the more complex one. But
isn’t it very tempting to assume that a subroutine with an improved average
complexity will at least improve the program that uses it? Well, but that is just
not necessarily true.

Now it is (or at least should be) common practice when plotting averages
to also provide so-called error bars, indicating some average deviation from the
average. The following theorem, which is the main result of this paper, says that
the “bands” formed by such error bars at least cannot be reversed completely,
that is, without intersection, by any monotone transformation f. As is also
stated in the theorem, however, the obvious strengthenings of this statement do
not hold: for example, it can very well happen that the bands do not intersect in
one measure, yet the means reverse in another measure. The theorem is stated in
terms of expected absolute deviations 6X = E|X —EX]| and 6Y = E|Y — EY|,
which are never more than the standard deviation; see Fact 1 further down.

Theorem 1. For any two random variables X and Y, and for any function f
that is strictly increasing, we have

EX +0X <EY — Y = Ef(X) - 6f(X) <Ef(Y)+5f(Y) .

This result cannot be strengthened in the sense that if we drop any one of 06X,
0Y, 6f(X), or6f(Y) to obtain weaker conditions, we can find a counter-example
to the statement.

The proof for Theorem 1, which we give in the following Sect. 2, is elementary
but not obvious. Indeed, on their way the authors switched several times between
striving for a proof, and being close to finding a counterexample. In Sect. 3, we
give an alternative, more elegant proof in terms of the median. The first proof
is more direct, however, while the second proof owes its elegance and brevity to
the insight gained from the first; this is why we give the two proofs in that order.

To establish Theorem 1, we will derive two non-standard one-sided tail esti-
mates for general random variables, namely for a > 0,

Pr(X > EX +a) < 6X/(2a);
Pr(X < EX —a) < 6X/(2a) .

70 H. Bast and I. Weber

These bounds, which are reminiscent of but incomparable to the one-sided
version of the Chebyshev inequality (cf. Appendix B), seem to be little known
and may be of independent interest.

2 Proof of the Main Theorem

All the proofs we give in this paper are for continuous random variables. In all
cases it will be obvious how to modify the proofs to work for the discrete case
by replacing integrals by sums. For a random variable X, we write EX for its
expected value (mean), o X for its standard deviation, that is /E (| X — EX|?),
and X for the mean absolute deviation E|X —EX|. We will throughout assume
that these entities exist. The following simple fact relates the two deviation
measures.

Fact 1. For every random variable X, it holds that 6X < ocX.

Proof. By Jensen’s inequality, (6X)? = (E|X —EX|)* < E (X -EX]?) =
(0X)?. D

Generally, this inequality will be strict. To get a feeling for the difference,
check that for a normal distribution N(p, o) we have § = 1/2/mo ~ 0.8¢ and
for an exponential distribution Exp(\) we have 6 =2/ec =2/(eX) = 0.70.

As a consequence of Fact 1 all our results still hold if we replace § by o, that
is, we will be proving the stronger form of all results.

We first prove the following non-standard tail estimates, which might be of
independent interest. There is a one-sided version of Chebyshev’s inequality [5]
which looks similar to Lemma 1 below, but the two are incomparable: Lemma
1 is stronger for deviations up to at least ¢ X, while the Chebyshev tail bounds
are stronger for large deviations; see Appendix B.

Lemma 1. For any random variable X and for every a > 0, it holds that

(a) Pr(X > EX +a) <6X/(2a) ;
(b) Pr(X <EX —a) <6X/(2a) .

Proof. Since §X is invariant under shifting X by a constant, we may assume
without loss of generality that EX = 0.
Then, with ¢ denoting the density function pertaining to X,

0=EX = / ﬁ+/ teo(t) dt
0

X = / ﬁ+/ Loty dt .
0

Adding the two equations gives us

5X:2-/ t-o(t)dt
0

Don’t Compare Averages 71
o0
22./ Feo(t) dt
a

oo
22a-/ o(t) dt

a
=2q-Pr(X >a) ,

and hence Pr(X > a) < §X/(2a), which establishes (a). The proof for (b) is
analogous. O

Armed with Lemma 1 we can now establish a relation between f(EX) and
Ef(X) for a monotone function f.

Lemma 2. For any random variable X, and for any function f that is strictly
increasing, it holds that

(¢) Ef(X) = 4f(X) Sf(EX+5X)
(b) Ef(X)+0f(X) > f(EX —6X) .

Proof. Let a = Ef(X) — f(EX 4+ 6X). If a <0, there is nothing to show for (a),
otherwise two applications of the previous Lemma 1 give us

1/2 < Pr(X < EX + 6X)
= Pr(f(X) < f(EX + X))
= Pr(f(X) <Ef(X) —a)
< 0f(X)/(2a) ,

and hence Ef(X) — f(EX +6X) = a < 0f(X), which is exactly part (a) of the
lemma. The proof of part (b) is analogous. More generally, we could in fact get
that for any ¢,

SF(X

)= 2Pr(X > t)

SEf(X)Sf(t)+m- O

Theorem 1 is now only two application of Lemma 2 away. Let EX + dX <
EY — ¢§Y, like in the theorem, that is, the “bands” formed by the error bars do
not intersect. Then

Ef(X) - 0f(X) < f(EX +0X)
f(EY = 6Y)

<
<
<SEf(Y)+4f(Y) ,

where the first inequality is by part (a) of Lemma 2, the second inequality follows
from the monotonicity of f, and the third inequality is by part (b) of Lemma 2.
This finishes the proof of our main theorem.

72 H. Bast and I. Weber

3 The Median

There is an elegant alternative proof of Lemma 2 in terms of the median.

Fact 2. For any random variable X and any strictly monotone function f we
have mf(X) = f(mX). In the discrete case the medians can be chosen to have
this property.

Proof. Simply observe that for any a we have Pr(X < a) = Pr(f(X) < f(a)).
Here we do require the strict monotonicity. O

Fact 3. For any random wvariable X, the median mX deviates from the mean
EX by at most 0X, i.e. mX € [EX —0X,EX + 6X].

Remark. This also establishes the (weaker) fact that for any random variable
X, the median mX always lies in the interval [EX — 0 X, EX + 0X], which is
mentioned in the literature [6], but, according to a small survey of ours, seems
to be little known among theoretical computer scientists. When the distribution
of X is unimodal, the difference between the mean and the median can even be
bounded by \/% - o [7]. By what is shown below, we may in that case replace

0 by v/3/5 0 in Theorem 1.

Proof. Fact 3 is an immediate consequence of Lemma 1 by noting that (for
continuous random variables) Pr(X < mX) = Pr(X > mX) = 1/2 and taking
a = 6X. Alternatively, we could mimic the proof of that lemma. O

These two simple facts are the heart and soul underlying Theorem 1 in the
sense that the two inequalities of Lemma 2 now have the following very short
and elegant alternative proofs:

Ef(X) - df(X) < mf(X) = f(mX)

< F(BX +6X)
Ef(X)+4f(X) > mf(X) = f(mX)

<
> f(EX —6X)

where the inequalities follow from Fact 3 and the monotonicity of f, and the
equalities are just restatements of Fact 2.

Given Theorem 1 and Fact 2, the question arises whether not the median
should generally be preferred over the mean when looking for an “average” value?

One strong argument that speaks against the median is the following. By the
(weak) law of large numbers, the average over a large number of independent
trials will be close to the mean, not to the median. In fact, by exactly the kind of
considerations given in our introduction, the order of the medians could be the
opposite of the order of the averages, which would be deceptive when in practice
there were indeed a large number of independent runs of the algorithm.

A pragmatic argument is that the mean can be computed much easier: the
values to be averaged over can simply be summed up without a need to keep
them in memory. For the median, it is known that such a memoryless compu-
tation does not exist [8]; even approximations have to use a non-constant num-
ber of intermediate variables, and the respective algorithms are far from being
simple [9].

Don’t Compare Averages 73

4 Relaxations of the Main Theorem

In this section, we show that the result from the previous section cannot be
relaxed in any obvious way, as stated in Theorem 1.

We try to find examples which are realistic in the sense that the f is well-
behaved and the distributions are simple. We do so to emphasize that all con-
ditions are also of practical relevance. First, observe that if the function f is
strictly increasing it also has a strictly increasing inverse function f~!. This
allows us to halve the number of cases we have to consider from four to two:
any counter-example for the case where 0.X is dropped from the statement of
Theorem 1, gives a counter-example for the case where df(Y) is dropped, by
replacing f(X) — U and f(Y) — V, where U and V are also random variables,
and the same symmetry relates Y to f(X).

To prove that we cannot drop the § X (and hence neither the § f(y)) from the
statement of Theorem 1, we consider an example where Y is constant. Then we
find an example of a distribution for X and a strictly increasing function f such
that

EX <Y and
Ef(X) - df(X) > f(Y) .

The obvious thing works: We let X have a two-point distribution with points
x1 <Y and 22 > Y and consider a function which is convex, e.g. f(z) = e*. For
this setting we try to solve the system

p1T1+par2 <Y
p1 f(z1) +p2 f(22) = 2p1p2 (f(22) — f(z1)) < f(Y) . (1)

It becomes slightly easier to spot solutions to this if we write p; = % — 6 and
p2 = 3 + 6. Then (1) becomes

2p1 f(z1) (1 4+0) +2paf(ze)d < f(Y) . (2)

Thus as long as § > 0 and f increases ‘fast enough’ in the region between Y
and x2 we can always construct a simple counter-example as f(z2) >> f(Y).
For example, take Y = 2, p; = %, P2 = %, r1 = —2, x9 = 3. Similarly, we can
find a two point counter-example for the case without the Y by considering a
logarithmic function. One such example consists of a constant X =1, p; = %,
p2 =1, 41 =5, y2 =3 and f(x) = log(x).

If we restrict ourselves, as we have done, to the case where only one of X
and Y is random we see from Jensen’s inequality that we must indeed consider
examples with the curvatures as chosen above. Otherwise, it would be impossible
to find a counter-example.

The same examples still work if we allow Y to have a small degree of variation.

74 H. Bast and I. Weber

5 Conclusions

Theorem 1 ensures that when conclusions are drawn only when the error bands
do not intersect, there will at least never be contradictions from the angle of
different measurement scales. The bad news is that, even when the error bands
do not intersect in one scale, in general nothing can be inferred about the order
of the averages after a monotone transformation.

Obviously, when two sets of measurements are completely separated in the
sense that the largest measurement of one set is smaller than the smallest mea-
surement of the other set, then no monotone transformation can reverse the
order of the averages. Beyond that, however, there does not seem to be any
less restrictive natural precondition, which most datasets would fulfill and under
which average reversal provably cannot occur.

What can be proven is that for two random variables X and Y, if 0 <
E(X —EX)* <E(Y — EY)* for all k € N, then for a monotonously increasing
function f, with all derivatives also monotone (as is the case for any monomial
x — xF with k € N, and for any exponential 2 +— b* with b > 1), indeed E(X) <
E(Y) = Ef(X) < Ef(Y). Unfortunately, this precondition is neither practical
to check nor generally fulfilled. For example, consider two random variables
with different exponential distributions, both mirrored around the mean: then
one random variable will have smaller mean and variance than the other, yet its
third central moment (which is negative), will be larger.

The bottom line of our findings is that, in case there is an option, there is no
alternative other than to explicitly provide a comparison in each cost measure
that is of interest. Anyway, it should be clear that even in one fixed cost measure,
an average comparison alone does not say much: it is well known (see [10] for
an easy-to-read account) that even when the error bands do not intersect, the
apparent order of the averages is statistically not significant. Comparing averages
can be a very deceptive thing. Hence our title.

References

1. Manning, C.D., Schiitze, H.: Foundations of statistical natural language processing.
MIT Press (1999)

2. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related
groups: Hierarchical dirichlet processes. In: Proceedings of the Advances in Neural
Information Processings Systems Conference (NIPS’04), MIT Press (2004)

3. Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of
the 24th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval (SIGIR’01), ACM Press (2001) 120-127

4. Mori, S., Nagao, M.: A stochastic language model using dependency and its im-
provement by word clustering. In: Proceedings of the 17th international conference
on Computational linguistics (COLING’98), Association for Computational Lin-
guistics (1998) 898-904

5. Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University
Press (1992)

Don’t Compare Averages 75

6. Siegel, A.: Median bounds and their application. Journal of Algorithms 38 (2001)
184-236

7. Basu, S., Dasgupta, A.: The mean, median and mode of unimodal distributions:
A characterization. Theory of Probability and its Applications 41 (1997) 210-223

8. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12 (1980) 315-323

9. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other
quantiles in one pass and with limited memory. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’98). (1998)
426-435

10. Motulsky, H.: The link between error bars and statistical significance.
(http://www.graphpad.com/articles/errorbars.htm)

A The Example from the Introduction

Each point in the figures in the introduction was computed as the average over
points distributed as Z = 2y + Exp()\), where Exp(A) denotes the exponential
distribution with mean 1/) (density is p(t) = A e~ **; variance is 1/)2).

For the mean of 22, or more generally, e*Z, we have that

EcZ = / (20 +1) \e =M gy
0

=0 N/ = kK)
< oilz0 + 1/~ 1)
— (20 + 1/ A+ K5/(AMA = K))).

For the figures in the introduction, we chose zy so that the means for each
curve would lie on a slightly perturbed line. For the light gray curve, we chose
A =1, for the dark gray curve we chose A = 2. For example, for X = 3+ Exp(1)
and Y =5 + Exp(2), we then have

EX=3+1/1=4
EY =5+1/2 =525,

and for k = 3/4 (then e =~ 2),

EelX ~ of(3+1.0+3.0) 970
EiY o KA T05403) L o58

Observe that in this setting we need k < A; and kK < Az to ensure that both
Ee*X and Ee®Y exist.

One objection against the exponential distribution might be that its exponen-
tiation is too heavy-tailed in the sense that not all its moments exist. However,
the same calculations as above can also be carried out for two, say, normal dis-
tributions, which are free from this taint. Let Z = N(zg,0), that is, Z has a

76 H. Bast and I. Weber

normal distribution with mean zy and standard deviation o. A straightforward
calculation shows that the mean of e®4, which obeys a lognormal distribution,
is given by

o= (t = 20)?/(20%) 4

IiZ /
vV 27r02

G20 T K 02/2

Taking, for example, X = N(4,1.5) and Y = N(4.5,1.0) and x = 1, we then
get the following reversed means after exponentiation:

EetX _ A+ K71.5%/2 _ 5125
2
EelY — k45 + K72 _ 5

B One-Sided Chebyshev Bounds

For the sake of completeness, we state the one-sided version of Chebyshev’s
inequality, which looks similar to Lemma 1 in Sect. 2. As mentioned in that
section, Lemma 1 is stronger for deviations up to at least 0 X, while the lemma
below is stronger for large deviations.

Lemma 3. For any random variable X and for every a > 0, it holds that

o 2
(a) Pr(X > EX +a) < %’.
(b) Pr(X <EX —a) < 570
Proof. See, for example, [5]. The main idea is to write Pr(X > EX + a) =
Pr((X — EX +¢)? > (a + ¢)?), then apply Markov’s inequality and determine
that ¢ which gives the best bound; similarly for (b). O

Experimental Results for Stackelberg Scheduling
Strategies™

A.C. Kaporis!, L.M. Kirousis!-2, E.I. Politopoulou':?, and P.G. Spirakis!-2

! Department of Computer Engineering and Informatics,
University of Patras, Greece
{kaporis, kirousis, politop, spirakis}@ceid.upatras.gr
2 Research Academic Computer Technology Institute,
P.O Box 1122, 26110 Patras, Greece
{politop, spirakis}@cti.gr

Abstract. In large scale networks users often behave selfishly trying to
minimize their routing cost. Modelling this as a noncooperative game,
may yield a Nash equilibrium with unboundedly poor network perfor-
mance. To measure this inefficacy, the Coordination Ratio or Price of
Anarchy (PoA) was introduced. It equals the ratio of the cost induced
by the worst Nash equilibrium, to the corresponding one induced by the
overall optimum assignment of the jobs to the network. On improving
the PoA of a given network, a series of papers model this selfish behavior
as a Stackelberg or Leader-Followers game.

We consider random tuples of machines, with either linear or M/M/1
latency functions, and PoA at least a tuning parameter c. We validate
a variant (NLS) of the Largest Latency First (LLF) Leader’s strategy on
tuples with PoA > c. NLS experimentally improves on LLF for systems
with inherently high PoA, where the Leader is constrained to control
low portion « of jobs. This suggests even better performance for systems
with arbitrary PoA. Also, we bounded experimentally the least Leader’s
portion o needed to induce optimum cost. Unexpectedly, as parameter
¢ increases the corresponding ay decreases, for M/M/1 latency functions.
All these are implemented in an extensive Matlab toolbox.

1 Introduction

We consider the problem of system resource allocation [28]. This problem is one
of the basic problems in system management, though systems today have high
availability of bandwidth and computational power.

* The 2nd and 4th author are partially supported by Future and Emerging Technolo-
gies programme of the EU under EU contract 001907 “Dynamically Evolving, Large
Scale Information Systems (DELIS)’. The 1st, 2nd and 3rd author are partially
supported by European Social Fund (ESF), Operational Program for Educational
and Vacational Training II (EPEAEK II), and particularly PYTHAGORAS.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 77-88, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

78 A.C. Kaporis et al.

Such systems are large scale networks, for example broadband [27], wireless
[8] and peer to peer networks[7] or Internet. The users have the ability to select
their own route to their destination with little or no limitation [4, 20, 9]. Since the
users are instinctively selfish, they may use the right of path selection and may
select a route that maximizes their profit. This selfish routing behavior can be
characterized by a fixed state, which in game theory is called Nash Equilibrium
[15, 18]. In this context, the interested reader can find much of theoretic work in
[15,12,14,9,11, 19, 20, 21].

However, Nash Equilibrium may lead a system to suboptimal behavior. As a
measure of how worse is the Nash equilibrium compared to the overall system’s
optimum, the notion of coordination ratio was introduced in [12, 14]. Their work
have been extended and improved (price of anarchy here is another equivalent
notion) in [14, 24, 3, 22,23, 6, 4].

Selfish behavior can be modeled by a non-cooperative game. Such a game
could impose strategies that might induce an equilibrium closer to the over-
all optimum. These strategies are formulated through pricing mechanisms]5],
algorithmic mechanisms[16, 17] and network design[25, 10]. The network admin-
istrator or designer can define prices, rules or even construct the network, in
such a way that induces near optimal performance when the users selfishly use
the system.

Particulary interesting is the approach where the network manager takes part
to the non-cooperative game. The manager has the ability to control centrally
a part of the system resources, while the rest resources are used by the selfish
users. This approach has been studied through Stackelberg or Leader-Follower
games [2,23,9,11,26]. The advantage of this approach is that it might be easier
to be deployed in large scale networks. This can be so, since there is no need to
add extra components to the network or, to exchange information between the
users of the network.

Let us concentrate on the setting of this approach. The simplified system
consists of a set of machines with load depended latency functions and a flow
of jobs with rate r. The manager controls a fraction « of the flow, and assigns
it to machines in a way that the induced cost by the users is near or equals
the overall optimal. An interesting issue investigated in [23,9], is how should
the manager assign the flow he controls into the system, as to induce opti-
mal cost by the selfish users. For the case of linear load functions, in [23] was
presented a polynomial algorithm (LLF) of computing a strategy with cost at
most 3%} times the overall optimum one, where « is the fraction of the rate
that the manager controls. Korilis et al [9] has initiated this game theoretic ap-
proach and investigated on the necessary conditions such that the manager’s
assignment induces the optimum performance on a system with M/M/1 latency
functions.

1.1 Motivation and Contribution

Our work is motivated by the work in [1,23,9]. We consider a simple modifica-
tion of the algorithm Largest Latency First (LLF) [23] called New Leader Strategy

Experimental Results for Stackelberg Scheduling Strategies 79

(NLS). Experiments suggest that NLS has better performance in competitive sys-
tems of machines, that is, systems with high value of price of anarchy PoA. Also,
it has good performance in cases where the Leader may be constrained to use
a small portion a of flow. Notice that PoA < 4/3 for linear latency functions.
Furthermore, a highly nontrivial algorithm presented in [1] slightly improves
over LLF for the case of linear latency functions. Then, despite its simplicity, our
heuristic has comparatively good performance.

Additionally, we conducted thousands random tuples of machines, with either
linear or M/M/1 latency functions. We experimentally tried to compute an upper
bound «q for the least possible portion of flow that a Leader needs to induce
overall optimal behavior. We have considered tuples of machines with M/M/1
latency functions such that their price of anarchy is at least a parameter c.
Surprisingly, as parameter ¢ increases (resulting to more competitive systems of
machines), the average value of «g decreases.

2 Improved Stackelberg Strategies

2.1 Model - Stackelberg Strategies

For this study the model and notation of [23] is used. We consider a set M of m
machines, each with a latency function ¢(-) > 0 continuous and nondecreasing,
that measures the load depended time that is required to complete a job. Jobs
are assigned to M in a finite and positive rate r. Let the m-vector X € R
denote the assignment of jobs to the machines in M such that Y./, z; = r. The
latency of machine ¢ with load x; is ¢;(z;) and incurs cost z;¢;(z;), convex on ;.
This instance is annotated (M,r). The Cost of an assignment X € R’ on the
(M, r) instance is C(X) = >_.* | x;¢;(x;), measuring system’s performance. The
minimum cost is incurred by a unique assignment O € Rl called the Optimum
assignment. The assignment N € R’ defines a Nash equilibrium, if no user can
find a loaded machine with lower latency than any other loaded machine. That
is, all machines ¢ with load n; > 0 have the same latency L while any machine
J with load n; = 0 has latency L; > L. According to the Definition 2.1 in [23]:

Definition 1. An assignment N € RY' to machines M is at Nash equilibrium
(or is a Nash assignment) if whenever i,j € M with n; > 0, £;(n;) < £;(n;).

The Nash assignment N causes cost C'(IN) commonly referred to as Social Cost
[15,12,14,9,11,19, 20, 21]. The social cost C'(N) is higher than the optimal one
C(0), leading to a degradation in system performance. The last is quantified
via the Coordination Ratio[12,14,3] or Price of Anarchy (PoA) [24], i.e. the

worst-possible ratio between the social cost and optimal cost: PoA = %, and

the goal is to minimize PoA ! To do so, a hierarchical non cooperative Leader-
Follower or Stackelberg game is used [2,23,9,11,26]. In such a game, there is a

! Notice that in a general setting may exist a set A of Nash equilibria, then PoA is

defined with respect to worst one, i.e. PoA = maxyea %.

80 A.C. Kaporis et al.

set M of machines, jobs with flow rate r and a distinguished player or Leader who
is responsible for assigning centrally an « portion of the rate r to the system
so as to decrease the total social cost of the system. The rest of the players,
called Followers are assigning selfishly the remaining (1 — a)r flow in order to
minimize their individual cost. This instance is called Stackelberg instance and
is annotated by (M,r,a). The Leader assigns S € R} to M and the Followers
react, inducing an assignment in Nash equilibrium. We give the same definition
for an induced assignment at Nash Equilibrium or induced Nash assignment as
in Definition 2.7 of [23].

Definition 2. Let S € R be a Leader assignment for a Stackelberg instance
(M, r,) where machine i € M has latency function €;, and let ;(x;) = ;(s;+x;)
for each i € M. An equilibrium induced by S is an assignment T € R at Nash

equilibrium for the instance (M, (1 — a)r) with respect to latency function 0. We
then say that S+ T is an assignment induced by S for (M, r, «).

The goal is achieved if C'(S+T') ~ C(O).
We consider here two types of latency functions: linear and M/M/1. Linear
latency functions have the form /;(x;) = a;x; +b;, @ € M, X € R7 and it

holds PoA < 4. M/M/1 latency functions have the form ¢;(z;) = ———, i €
M, X € R and it holds PoA < %(1 + %), where w,,;, is the

smallest allowable machine capacity and R, is the largest allowable traffic
rate.

Finally, to tune the competitiveness of a particular system M, we define the
parameter ¢ as a lower bound of its PoA. Thus, systems with highly valued
parameter ¢ are particularly competitive.

2.2 Algorithm NLS

Algorithm: NLS(M,r, «)

Input: Machines M = {M,,...,M,,}, flow r, and portion « € [0, 1]

Output: An assignment of the load ar to the machines in M.

begin:
Compute the global Optimum assignment O = (01,...,0m,) of flow 7 on M;
Compute the Nash assignment N = (ni,...,nm,) of the flow (1 —a)r on M;
Let M*={M; € M | n; =0};
If E{i:MieM*}oi > ar then assign local optimally the flow ar on M~™;

else assign the flow ar on M according to LLF;

end if;

end;

Notice that it is possible to heuristically compute an even larger subset M*
unaffected by the Followers, allowing us to assign to it a even larger portion
o > «a of flow.

In [23] it was presented the Large Latency First (LLF) Stackelberg strategy for
a Leader that controls a portion « of the total flow r of jobs, to be scheduled to

Experimental Results for Stackelberg Scheduling Strategies 81

a system of machines M. For the case of machines with linear latency functions,
it was demonstrated that the induced scheduling cost is at most 3_% of the
optimum one.

We present and validate experimentally the New Leader Strategy (NLS). Our
motivation was a system of machines presented in [23], end of page 17. In that
example, the set of machines is M = {M;, Ms, M3} with corresponding latency
functions ¢1(x) = xz,l3(x) = « + 1,43(x) = = + 1. LLF at first computes the
optimum assignment O = (07 = %,02 = %,03 = %), of the total flow r = 1
to the given set of machines M. On each machine i, load o; incurs latency
value ¢;(0;), i =1,...,3. Then, LLF indexes the machines, from lower to higher
latency values, computed at the corresponding optimum load. In this example,
the initial indexing remains unchanged, since: ¢1(01) < ¢3(02) < ¢3(03). In the
sequel, it computes a Stackelberg scheduling strategy S = (s1, s2,s3) for the
Leader as follows. LLF schedules the flow ar that Leader controls, filling each
machine ¢ up to its optimum load o;, proceeding in a “largest latency first”
fashion. At first, machine 3 is assigned a flow at most its optimum load o3.
If ar — o3 > 0, then machine 2 is assigned a flow at most its optimum load
09. Finally, if ar — 03 — 0y > 0, then machine 1 receives at most its optimum
load 01. Notice that all selfish followers prefer the first machine, i.e the Nash
assignment is N = (n; = 1,ny = 0,n3 = 0), since the total flow equals r =
1. Provided that no Follower affects the load assignment S of the Leader to
the subset of machines M’ = {2,3}, a crucial observation is that strategy S
computed by LLF is not always optimal. It is optimal only in the case that
the portion « of Leader equals: a = @ In other words, the assignment of
the Leader would be optimal if its flow was enough to fill all machines 2 and
3 up to their corresponding optimal loads 09, 03. Taking advantage of this, a
better Stackelberg strategy is: S’ = (s} =0, sh, = 03, s§ = 0%), where o5 and
o5 are the corresponding local optimum loads, of the flow ar that a Leader
controls, on the subset of the machines {2,3} which are not appealing for the
Followers.

To illustrate this, consider any o < 02 4 03 = % + %, for example let a =
Then LLF computes the Stackelberg strategy S = (0,0, %>, inducing the Nash
assignment N = (%,0%} with cost Cg = (%)2 + (1+%)% = %. However,
the local optimum assignment of the flow a = % to machines 2 and 3 is S/ =
(0,75, 7). This induces the Nash assignment N’ = (2, L) with cost Csr =
() +(+f) b =<5

We propose algorithm NLS that takes advantage all these issues discussed
above. Intuitively, it tries to compute a mazimal subset M* C M = {1,...,m}
of machines not appealing to the selfish users. This subset M* C M consists
of exactly those machines that receive no flow by the Nash assignment of (1 —
a)r flow on M. Then it assigns the portion ar of a Leader local optimally on
M*. The empirical performance of NLS is presented in Section 4, in Figures 2
and 4.

[N

82 A.C. Kaporis et al.

3 Algorithm OpTop

3.1 Description

In [23] (also see the important results in [9] for the case of M/M/1 latency
functions) it was possed the important question:

“Compute the minimum flow of jobs that a Leader may play according to
a Stackelberg scheduling strategy to a system of machines, in a way that
the selfish play of the Followers leads the system to its optimum cost.”

In this section, we investigate this issue experimentally for the case of machines
with linear latency functions. Algorithm OpTop below (based on features of LLF),
tries to control a minimal portion « of the total flow r of jobs. It schedules this
flow to a system of m machines, in a way that the selfish play of the Followers
drives the system to its optimum cost. Intuitively, OpTop tries to find a small
subset of machines that have the following stabilizing properties:

— The selfish play of the Followers will not affect the flow ar assigned by the
Leader optimally to these machines.

— The selfish play of the Followers of the remaining (1 — «)r flow on the re-
maining machines will drive the system to its optimum cost.

Algorithm: OpTop (M, r, 79)
Input: Machines M = {M;i,..., My}, flow r, initial flow ro
Output: A portion a of flow rate 79

begin:
Compute the Nash assignment N := (ni,...,nm,) of flow 7 on machines M;
Compute the Optimum assignment O := (01,...,0m,) of flow r on machines M;

If (N=0) return (ro —7)/ro;
else (M,r) «— Simplify(M,r, N,O);
return OpTop(M,r,70);
end if}
end;
Procedure: Simplify (M, r, N, O)
Input: Machines M = {M,...,M,}, flow r

Nash assignment N := (ni,...,Nm)
Optimum assignment O := (01,...,0m)
Output: Set of machines M, Flow r

begin:
for i =1 to size(M) do:
If 0;>n; then
T T — 0
M — M\{M;};
end if}
end for;
end;

The key features of OpTop are presented with the help of Figures la, 1b, lc.
The corresponding Nash and Optimum assignments to these machines are de-

Experimental Results for Stackelberg Scheduling Strategies 83

noted as: N = (nq,...,ns), such that Z?:1 n; = r, O = {(01,...,05), such
that E?Zl 0; = T.

Definition 3. Machine i is called over-loaded (or under-loaded) if n; > o; (or
n; < 0;). Machine i is called optimum-loaded if n; = 05,5 =1,...,m.

Initially, the algorithm assigns to all under-loaded machines in Figure 1a their
optimum load. That is, it assigns optimum load o4 and 05 to machines 4 and 5 in
Figure 1b. Then the players selfishly assign the remaining r» — o4 — 05 flow to the
system of 5 machines. Observe that in the induced Nash assignment, none of the
machines 4 and 5 receives flow. That is, machines 4 and 5 have been stabilized
to their optimum load, irrespectively of the selfish behavior of the Followers, see
also Theorem 1.

A crucial point is that we can remove machines 4 and 5 from consideration
and run recursively OpTop on the simplified system of machines. In other words,
the induced game now is equivalent to scheduling the remaining r — 04 — 05 flow
to the remaining machines 1, 2 and 3, see also Lemma 1.

In the sequel, in the simplified game, now machine 3 has become under-loaded
and 2 optimum-loaded, while 1 remains over-loaded, see Figure 1b. In the same
fashion as in the original game, OpTop assigns load o3 to machine 3. Happily, the
induced selfish scheduling of the remaining r — 03 — 04 — 05 flow yields the overall
optimum assignment for the system. That is, the remaining r — 03 — 04 — 05 flow,
when scheduled selfishly by the Followers, ignores machines 3, 4 and 5 (they
assign no load to these machines) while their selfish behavior assigns induced
Nash load n} = o; to each machine i = 1,2, see Figure 1lc.

In this example, algorithm OpTop needed to control a portion ag =
of the total flow r of jobs, in a way that the final induced load to each machine
i equals its optimum value o;, ¢ = 1,...,5. OpTop’s objective is to impose the
overall optimum by controlling the least possible portion ag. The cornerstone
for the stability of the load assigned by OpTop to any machine is Theorem 1.
Intuitively, this theorem says that OpTop raises the latency of proper machines

03+04+05
bl

Fig.1. A dashed (or solid) line indicates the Nash (or Optimum) load n; (or o)
assigned to each machine ¢ = 1,...,5. (a) Machines 1 and 2 (4 and 5) are over(under)-
loaded while 3 is optimum-loaded. Then OpTop will assign load 04 and os to machines
4 and 5. (b) Now machines 4 and 5 received load o4 and o5 by OpTop. In the induced
Nash assignment, machines 1 (3) become over(under)-loaded while 2 becomes optimum-
loaded.(c) Finally, OpTop assigns load o3 to machine 2. In the induced Nash assignment,
machines 1 and 2 become optimum-loaded

84 A.C. Kaporis et al.

sufficiently high, making them not appealing to selfish players, while retaining
their respective optimum load.

Theorem 1. Consider m machines with latency functions {;(x) = ajx+b;, j =
1,...,m. Let the Nash assignment N = (ny,...,ny) of the total load r on the
m machines. Suppose that for a Stackelberg strateqy S = (s1,...,8m) we have
either s; > n; or s; = 0,5 =1,...,m. Then for the induced Nash assignment
T = (t1,...,tm) of the remaining load r — >\~ | s; we have that t; =0 for each
machine j such that s; > n;, j=1,...,m.

Proof. By assigning load s; > n; to machine j then for any induced load ¢; >
0 to it, its latency is now increased up to Zj(tj) = ajt; + 4;(s;) > {;(s5) >
¢j(nj), j =1,...,m. Since the induced Nash assignment 7" assigns total load
T—Z;Zl s < Z{i:s,_-:o} n4, its is not now possible for any machine j with s; > n;
to become appealing to the selfish users, j =1,...,m.

Theorem 1 is valid for arbitrary increasing latency functions. Interestingly, a
similar (monotonicity) argument can be found in [13]. Another difficulty for the
evolution of the algorithm, is to describe the selfish play of the users in the
remaining machines. To this end, Lemma 1 is helpful.

Lemma 1. Let a set of machines M = {Mj, ..., My, } and the Nash assignment
N = (nq,...,ny) of the total load r on these machines. Fix a Stackelberg strategy
S = (s1,...,8m) such that either s; > n; or s; = 0,j = 1,...,m. Then the
initial game is equivalent to scheduling total flow: v — Y 1" s;, to the subset
M' C M of machines: M' = M\{M; : s; >n;}, i=1,...,m.

Proof. Tt follows from Theorem 1.

Lemma 1 allows us to run recursively OpTop on the simplified game on the
remaining machines. The empirical performance of OpTop is presented in Section
4, in Figures 3 and 5.

4 Experimental Validation of the Algorithms

All experiments presented in this section are performed using the package Mat-
lab [29]. An extensive toolbox was created for manipulating large systems of
machines for both linear and M/M/1 latency functions. All the routines of com-
puting the Optimum and Nash assignments, the LLF and NLS strategies are also
implemented in the same Toolbox [30].

Here we present results for 5-tuples of random machines for both linear and
M/M/1 latency functions. Similar results were observed for k-tuples with k > 5.
For total flow 7, machine i receives a portion or flow x; which incurs latency

U(x;) = ax; +b;, ¢ =1,...,5, where a;,b; are random numbers in [0, 7] and
E?Zl x; = r. The corresponding random M/M/1 latency functions are £(z;) =
! i=1,...,5. We created many large collections of 5 tuples of machines,

Ui —Tq

Experimental Results for Stackelberg Scheduling Strategies 85

where each such collection satisfies a predetermined value of the parameter ¢ < %
(recall ¢ is a lower bound of the price of anarchy value PoA). That is, for each
generated random 5-tuple of machines, we compute the ratio of the cost of the
Nash assignment to corresponding optimum one, and we store the 5-tuple to the
appropriate c-valued collection of tuples. Intutively, a collection of tuples with
particularly high value of ¢ consists of highly competitive machines and the role
of the Leader is important.

4.1 Linear Latency Functions

Comparing NLS to LLF. We know that LLF strategy induce a Follower assign-
4

ment that drives the PoA to 3. We are interested in finding out how much
better the NLS strategy does in comparison to LLF strategy. In other words we
are interested in measuring the ratio % The worst case would be when this
ratio is 1, which means that the NLS strategy is the same as the LLF strategy.
This phenomenon is expected since NLS is based on LLF but we are interested in
finding out the how much similar is NLS to LLF. Based on intuition, we expected
that in instances with higher values of PoA our strategy will do better than LLF.
This will be the case with even lower «, since we may manipulate more machines
in the subset M* which is described in the pseudo code of NLS. This intuition
was confirmed by the experiments, as it is shown in Figure 2. Both diagrams
present the percentage of machines that had gzzigti < 1. What is remarkable is
that NLS does better when the parameter ¢ of the machine instances is increased
from 1 up to 1.2. Then the corresponding portion of machines that had better

performance using NLS is increased from 33% up to 62% of the instances.

POA >=12 POA >=1

Cost NLS/Cost LLF <1 Cost NLS/Cost LLF <1

62,00% 33,00%
38,00% 67,00%

Cost NLS/Cost LLF = 1 Cost NLS/Cost LLF =1
PoA>=12

14,00% 62% Cost NLS / Cost LLF <1 S
B 16.00%
14,00%
12,00%
10,00%

PoA >=1
33% Cost NLS / Cost LLF <1

8 1000%

ta
2 =
8
2

8,00%
6.00%

Machine instan
s> o
8 8
Machine instances

4,00%

2,00% 2,00%

0,00% 0.00%
A @D B D P D DD AP PP PP

A A o N oV Do B O A DO RN DO AR S R 2 R P & R 2 2 2 20 S

RICRNCRACICASICICACIOENIC SO A IR ISENENENEN NN RN RN R N NN RN RN

Cost NLS / Cost LLF Cost NLS / Cost LLF

Fig. 2. Linear load functions: % for PoA > 1.2 and for PoA >1
We conjecture that the reason for this phenomenon is that systems with
high PoA usually overload 1 or 2 machines, while the rest ones remain idle.
Therefore, the ar flow assigned local optimally by the Leader to the subset of
the idle machines remains unaffected.
Another interesting observation was that NLS does better than LLF for small
a. For the instances with PoA > 1 the NLS strategy is better than LLF strategy

86 A.C. Kaporis et al.

30,00% PoA >=1.2 30,00% POA >=1
27,50%
25,00%
22,50% g
% 20,00% £20,00%-
£ 17,50% B 17:50%
2 15,00% £ 15,00%
© 1250% 212,50%
£ 10,00% £10,00%
8 7,50%
5,00% 5,00%
2,50% 2,50%
0,00% 0,00%

0 03 04 05 06 07 08 09 1 o o1 02 03 04 05 08 07 08 09 1

Fig. 3. Linear latency functions: The ap computed by OpTop to reach the overall opti-
mum for PoA > 1.2 and for PoA >1

for average o« = 0.132 while for instances with PoA > 1.2 the average « is higher
and has the value a=0.313.

Finally, the average $28%S8 for PoA > 1 is 0.995 while the
1.2 is 0.991.

CostNLS
CostLLF for PoA 2

Results for OpTop. The algorithm OpTop that we presented in Section 3, com-
putes an upper bound to the amount ar of flow that the Leader must posses in
order to induce optimal assignment. That is, we are interested in computing an
upper bound to the minimum flow o that the Leader must control to guaran-
tee overall optimum performance induced by the Followers selfish play. In Figure
3, x-axis presents the portion agy needed to induce the overall optimum, while
y-axis presents the corresponding percentage of 5-tuples of machines.

The results of our experiments on the set of machine instances are presented
in Figure 3 below. In instances where PoA > 1 the portion aq of load flow the
Leader has to control ranges in ag € [0, 0.9] and its average value is og = 0.5.

Also in Figure 3, as PoA’s lower bound increases up to 1.2, the range of «y
the Leader has to control also increases, that is ap € [0.4, 0.9]. In this case its
average value is ag = 0.6.

4.2 Results for M/M/1 Latency Functions
For M/M/1 latency functions, (i.e. of the form —-) the results are similar. The

PoA of the systems with such load functions is 17{01?5 that different from the linear
load functions. As we can see the NLS strategy does better for systems with an
increased lower bound (parameter ¢) of PoA.

Once more, in Figure 4 we can see that NLS does better when the parameter
c of the machine instances is increased from 1 up to 1.2. Then the corresponding
portion of machines that had better performance using NLS is increased from
19% up to 43% of the instances. Furthermore, in the same figure, we see that
the average S220I5 for PoA > 1is 0.992 while the S25LS for PoA > 1.2 is 0.988.

The results of our experiments for OpTop on the set of machine instances are
presented in Figure 5 below. In instances where PoA > 1 the portion ag of flow
the Leader has to control to induce the overall optimum ranges in ag € [0.2, 0.9]
and its average value is ag = 0.57. Also in this figure, as PoA’s lower bound

increases up to 1.2, the range of ag the Leader has to control is in o € [0.2, 1].

Experimental Results for Stackelberg Scheduling Strategies

87

PoA>=1.2

Cost NLS/Cost LLF <1
43,00%

57,00%
Cost NLS/Cost LLF=1

POA >=1

81,00%

Cost NLS/Cost

19,00%

Cost NLS/Cost LLF=1

LLF <1

10,00%

\‘
o
3

@

,00%

machine instances

2,50%

POA >=1.2
47% Cost NLS / Cost LLF <1

Cost NLS / Cost LLF

22,50%
20,00%

o o A
A P o
2% ©

19% Cost NLS / Cost LLF <1

9 > o
& o
SRR

&

Cost NLS / Cost LLF

&

PoA >=1

Fig. 4. M/M/1 latency functions:

CostNLS
CostLLF

for PoA > 1.2 and for PoA >1

35,00%
30,00%
25,00%
20,00%
15,00%
10,00%

Machine instances.

5,00%
0,00%

PoA>=1.2

0 o1 02 03 04 05 06 07 08 09 1

02 03

04 05

PoA >=1

os 07 08 09

1

Fig.5. M/M/1 latency functions: The aop computed by OpTop to reach the overall
optimum for PoA > 1.2 and for PoA > 1

Rather unexpectedly, in this case its average value has been reduced to oy = 0.44.
Further work will focus on machine instances with arbitrary latency functions,
where the PoA is greater or even unbounded and the results are expected to be
more interesting than those of the linear load functions and M/M/1 functions.

Acknowledgements

We thank the anonymous referees for their comments that substantially im-
proved the presentation of our ideas.

References

ing Strategies. In Proc. ICALP 02, pp. 776-787.

[\]

02.

. V. S. Anil Kumar, Madhav V. Marathe. Improved Results for Stackelberg Schedul-

. T. Basar, G. J. Olsder. Dynamic Noncooperative Game Theory. STAM, 1999.
. A. Czumaj and B. Voecking. Tight bounds for worst-case equilibria. In Proc. SODA

4. A. Czumayj. Selfish Routing on the Internet, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, CRC Press, 2004.

88

10

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.
30.

A.C. Kaporis et al.

J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. In Proc. STOC ’00.

D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis. The
structure and complexity of nash equilibria for a selfish routing game. In Proc.
ICALP 02, pp 123-134.

P. Golle, K. Leyton-Brown, I. Mironov, M. Lillibridge. Incentives for Sharing in
Peer-to-Peer Networks.Full version, In Proc. WELCOM 01.

S. A. Grandhi, R. D. Yates and D. J. Goodman: Resource Allocation for Cellular
Radio Systems, In Proc. IEEE Transactions on Vehicular Technology, vol. 46, no.
3, pp. 581-587, August 1997.

Y.A. Korilis, A.A. Lazar, A. Orda: Achieving network optima using stackelberg
routing strategies, In Proc. IEEE/ACM Transactions of Networking, 1997.

Y. A. Korilis, A. A. Lazar and A. Orda. The designer’s perspective to noncooper-
ative networks. In Proc. IEEE INFOCOM 95.

Y.A. Korilis, A.A. Lazar, A. Orda: Capacity allocation under noncooperative rout-
ing, In Proc. IEEE/Transactions on Automatic Control, 1997.

E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. In Proc. STACS 99,
pp. 387-396.

H. Lin, T. Roughgarden, and E. Tardos, A Stronger Bound on Braess’s Paradox,
SODA 2004.

M. Mavronikolas and P. Spirakis: The price of Selfish Routing, In Proc. STOC”
01.

R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991
N. Nisan and A. Ronen. Algorithmic mechanism design.In Proc. STOC’99, pp
129-140

N. Nisan. Algorithms for selfish agents: Mechanism design for distributed compu-
tation. In Proc. STACS ’99.

M. J. Osborne, A. Rubinstein. A course in Game Theory, MIT Press

G. Owen. Game Theory. Academic Press. Orlando, FL, 3rd Edition, 1995.

C. Papadimitriou. Game Theory and Mathematical Economics: A Theoratical
Computer Scientist’s Introduction. In Proc. FOCS 01.

C. Papadimitriou. Algorithms, Games, and the Internet. In Proc. STOC ’01, pp
749-753.

T. Roughgarden. The price of anarchy is independent of the network topology. In
Proc. STOC 02, pp 428-437.

T. Roughgarden. Stackelberg scheduling strategies. In Proc. STOC ’01, pp 104-
113.

T. Roughgarden, E. Tardos. How bad is Selfish Routing?. In Proc. FOCS ’00,pp
93-102.

T. Roughgarden. Designing networks for selfish users is hard. In Proc. FOCS 01,
pp 472-481.

H. von Stackelberg. Marktform aund Gleichgewicht. Spiringer-Verlag, 1934

H. Yaiche, R. Mazumdar and C. Rosenberg. Distributed algorithms for fair band-
width allocation in broadband networks, In Proc. INFOCOM 00.

H. Yaiche , R. Mazumdar and C. Rosenberg. A game-theoretic framework for
bandwidth allocation and pricing in broadband networks, In Proc. the IEEE/ACM
Transactions on Networking, Vol. 8, No. 5, Oct. 2000, pp. 667-678.

Optimization Toolbox for use with MATLAB, User’s Guide, MathWorks.
http://students.ceid.upatras.gr/~ politop/stackTop, Stackelberg Strategies Tool-
box.

An Improved Branch-and-Bound Algorithm
for the Test Cover Problem*

Torsten Fahle and Karsten Tiemann**
Faculty of Computer Science,
Electrical Engineering and Mathematics,
University of Paderborn, Fiirstenallee 11,
33102 Paderborn, Germany
{tef, tiemann}@uni-paderborn.de

Abstract. The test cover problem asks for the minimal number of tests needed
to uniquely identify a disease, infection, etc. At ESA’02 a collection of branch-
and-bound algorithms was proposed by [4]. Based on their work, we introduce
several improvements that are compatible with all techniques described in [4].
We present a faster data structure, cost based variable fixing and adapt an upper
bound heuristic. The resulting algorithm solves benchmark instances up to 10
times faster than the former approach and up to 100 times faster than a general
MIP-solver.

1 Introduction

We are given a set of m items and a set of tests T = {7}, ..., T}, Tp C {1,...,m},
k=1,...,n. A test Ty is positive for an item i if i € T}, and negative if ¢ & T}. In
general, we must use different tests to uniquely identify a given item because a single
test can be positive for several items. We say that a test T} separates a pair of items
{i,j}, 1 <1< j <m,if |T, N {i,j}| = 1. Finally, a collection of tests 7 C T is a
valid cover ifV1<i<j<m: 3T, €T: |TNn{ij} =1

The test cover problem (TCP) asks for a valid cover 7 C T that is minimal among
all valid covers. Le. for all valid covers 7’ it holds |7| < |T’|. The weighted test cover
problem is a canonical extension of the test cover problem: Given ¢ : T — IN, where
¢(T) represents the cost for test 7', we look for a valid cover 7 that is cheapest among
all valid covers 7": Y 7 ¢(T) < > peqr c(T).

Test cover problems are important in many real-life applications like medical diag-
nostics, biology, pharmacy, fault detection, or coding theory (see [4]).

The test cover problem has been studied by several authors in recent years. It is
known to be NP-hard [3] and approximation algorithms [5] as well as exact branch-
and-bound approaches [4, 7] have been proposed. The authors of [4] compared the ef-

* This work was partly supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT).
** International Graduate School of Dynamic Intelligent Systems.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 89-100, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

90 T. Fahle and K. Tiemann

fectiveness of several pruning criteria, lower bounds and fixing techniques for their
algorithm solving unweighted TCPs.

In this paper, we present and analyze improvements on the approach of De Bontrid-
der et al. [4]. All techniques are compatible with the weighted case as well:

(i) We use a much faster data structure for the branch-and-bound algorithm. All tech-
niques discussed in [4] benefit from this efficient data structure and numerical
results show a typical speedup of 2 — 10 compared to solving the problem with the
straightforward data structure.

(ii) We introduce cost based variable fixing techniques. That is, during tree search we
try to identify tests 7} that have to be (cannot be) part of any improving solution.
Those tests are included (excluded) without branching. In so doing, runtime is
reduced by a factor of 2 — 4 and the number of branch-and-bound nodes decreases
by a factor of up to 5.

(iii) Finally, we improve convergence of the branch-and-bound algorithm by using an
upper bound. Having a good upper bound before branch-and-bound impacts on
variable fixing.

Items (i) and (iii) are based on a simple observation: Any test cover instance having
m items and n tests can be transformed into a set covering instance having O(m?)
elements and n subsets. We investigate on that relation in the next section.

1.1 Relation Between Test Cover and Set Covering Problems

A set covering problem (SCP) consists of n subsets {S1,...,5,} =8S,S; C {1,...,¢}.
Furthermore, there is a cost function ¢ : S — IN, where ¢(.S;) represents the cost of
the subset S;. The SCP asks for a collection S C S such that {1, ..., ¢} is covered at
minimal cost. To be more precise:

L. Uges S =11,...,0} and
2. For all 8’ such that Jg. s S = {1,...,£} wehave) g 5c(S) <D gcs c(9).

SCPs are NP-hard. Given their importance in flight scheduling, crew rostering, etc. they
have been subject of intensive research during the last decades, see the survey in [2].

A TCP instance can be interpreted as a SCP instance by considering all pairs of
items and asking for a coverage of all pairs by the tests. Let (m, T = {T1,...,T,},¢)
be a TCP instance. A SCP instance (¢,S = {S1,...,S,},) is constructed by

(i) using all pairs of items: {1,..., 0} «— {e;; | 1 <i < j<m}
(if) setting Sy, to contain all pairs of items separated by test Ty: S, — {e;; | |Tx N
{i,j}|=1,1<i<j<m},k=1,...,n,and by
(iii) keeping the original costs by: ¢/(Sy) := ¢(T}), Yk € {1,...,n}.

It is easy to see that a SCP solution S C S defines a solution 7 C T for the TCP.
By construction, the objective value of both solutions is identical. Thus, we can solve a
TCP with n tests and m items by solving the corresponding SCP having n subsets and
O(m?) items.

An Improved Branch-and-Bound Algorithm 91

1.2 Organization of the Paper

We start our discussion by presenting the basic branch-and-bound approaches of [4] in
Sect. 2. After that, we show how to adapt it so as to solve TCPs which are described
by SCPs. In Sect. 3 we present variable fixing techniques. Further improvements are
obtained by using an upper bound introduced in Sect. 4. In Sect. 5, we compare the
runtimes of CPLEX, the old and the new branch-and-bound approach. A discussion
of the impact of cost based variable fixing techniques closes this section. Finally, we
conclude.

2 Basic Branch-and-Bound Approaches

In this section we describe the basic branch-and-bound approaches used in order to
solve TCPs. We first briefly recall the approach used by De Bontridder et al. [4] which
works on the original TCP formulation. Thereafter, we describe how to adapt that ap-
proach to handle the SCP formulation of the TCP. Interestingly, all methods used in
the direct (TCP) approach can easily be adapted to work also in the indirect (SCP)
one. This allows to apply all structural methods known for the TCP also in the indirect
approach.

2.1 Solving the Test Cover Problem Directly

In [4] various lower bounds and pruning criteria, as well as variable ordering heuristics
for the TCP were described. Furthermore, a branch-and-bound framework was pre-
sented that allows to use any combination of a lower bound, a pruning criterion and a
variable ordering heuristic.

Each branch-and-bound node is assigned a tuple (7,R). 7 C T contains those
tests that are included in the solution currently under construction. R C T contains
tests that have been discarded from the current solution. Thus, 7 N'R = (. Initially,
it holds R = (, 7 = {. Branch-and-bound decides on the remaining tests
TeT\(TUR).

A branch-and-bound node (7, R) potentially generates [:= |T \ (7 U R)| child
nodes. These nodes are ordered by some heuristic such that the most promising nodes
(those with high quality) are processed first. After renumbering we obtain the child
nodes: (7 U{T1},R), (T U{T2},RU{T1}), (T U{T5},RU{T1,T2}), ... (T U
(T} RU{TY, .y i1 }).

Nodes are considered in a depth-first search, i.e. node (7 U {T1},R) and all its
successors are explored prior to node (7 U {72}, R U{T}}).

Quality Criteria. In [4] four quality criteria are described: Separation criterion D, in-
formation criterion AE, power criterion P, and least separated pair criterion S. We
introduce two of them in more details here and give a simple adaption to the weighted
case. Before that, define the subsets I7, 17, ..., I7 C {1,...,m} (introduced in [4]).
Given a partial cover 7 C T, a subset IJT is a largest subset containing items that are
pairwise not separated by the current partial solution 7.

92 T. Fahle and K. Tiemann

The separation criterion D(T'|7) was introduced in [7]. It calculates the cost per
additional separated pair of items that test 7" causes when it is added to 7 as
T
D(T|T) = T SNrnrl| L\
h=1

The least separated pair criterion S was used e.g. in [7, 8,9, 10]. First, we search
for a pair of items {i, j} that is covered by least remaining tests. Then we separate the
remaining tests into those covering the item pair, and those not covering it by:

1 if|T'n{ij} =1
S(T|T)::{O els|e e

Criterion S can be used alone and follows the idea of assigning most critical items
early in the search. In our work, as well as in [4] S is only used in combination with
some other criterion (denoted as S(C'), where C' € {D, AE, P}). There, all T' € T \
(7 UR) are grouped according to S: {T'| S(T|7) =1} and {T | S(T|7) = 0}. Within
each of these groups, tests are sorted according to criterion C'.

Lower Bounds. We use two different lower bounds L; and Lo for pruning. The first
one is based on the property that at least [log,, k] tests are necessary to separate k items
that have not been separated so far. This results in the lower bound
T
Ly(T) = logy(, max |17
Lower bound L, requires the use of the power criterion and some combinatorial values
that can be found by a recursive algorithm. Because of space limitations and since this
work is on algorithmic improvements we have to refer to [4] for more details on Ls.
For weighted instances, we can transform a bound Ly, ¢ € {1,2} into a lower bound

Ly, q € {1, 2} for the weighted problem by summing up the L,(7) smallest cost
values of tests in T \ (7 UR).

Pruning. Pruning, that is detecting and discarding useless parts of the search tree is
based on four different criteria. Let L be a lower bound on the additional number of
tests needed to cover all pairs of items (in addition to the selected tests in 7°). We prune

PC1 if according to the lower bound more tests are needed than are available, i.e.
if L > |T| —|7| — |R| then prune

PC2 if the minimal number of tests needed to construct a solution is not smaller than
the number of tests U in the best solution found so far, i.e.

if 7|+ L > U then prune

PC2w (PC2 for weighted case, U is objective value of the best solution found so far)

L
if Z o(T) + Z ¢(T;) > U then prune

TeT i=1

An Improved Branch-and-Bound Algorithm 93

(PC2w requires the remaining tests 7; € T \ (7 U R) to be sorted according to
increasing costs. Such an ordering can be determined in a preprocessing step.)
PC3 if there is an uncovered pair of items that cannot be covered by any of the remain-

ingtestsin T \ (7 UR).

2.2 Solving the Test Cover Problem Indirectly

We propose to solve the test cover problem indirectly. L.e. instead of working on the
original formulation, we transform the TCP into a SCP (Sect. 1.1).

This transformation squares the number of “objects” in the problem, because rather
than separating m items in the TCP we have to cover ©(m?) pairs of items in the SCP.
On the other hand, most techniques described before have to spend time 2(m?) anyway
(e.g. they need to find out which pairs of items are not covered, etc.). That is, the direct
formulation is more space efficient, but does not save computing time. Even worse,
whereas in the SCP formulation we can delete a pair of items from consideration as
soon as we have covered it, we cannot do similarly in the original formulation.

There, pairs of items are checked sequentially and an item 7 can only be removed
from the list of active items, when it is separated from all other items j. In the best case
this happens after m — i steps (after separating {i,7 + 1},...,{i¢,m} we can discard
item 7). In the worst case, however, %(m2 — 2m) + 1 steps are necessary before in the
direct formulation a test can be discarded from consideration (see Fig. 1).

m(m-1) 4
2

pairs of items being covered

Fig. 1. Schematic view on the runtime (y-axis) when working on a branch-and-bound node with
a certain number of separated pairs of items (x-axis). (a) is the runtime for the indirect approach
— runtime is proportional to the number of pairs of items. (b) and (c) give examples for best and
worst case runtimes when using the direct formulation of the problem

Interpreting a TCP as a SCP thus gives a natural way of finding a more efficient data
structure for pairs of items.

3 Variable Fixing

Variable fixing aims in identifying tests that have to be part of a feasible or optimal
solution. It is one of the building blocks in constraint programming and it is frequently
used in presolving for mixed integer programming. We first explain in Sect. 3.1 a fixing
technique also used in [4]. In Sect. 3.2 we introduce a new variable fixing method based
on costs that can reduce runtime by a factor of 2 — 4 (see Sect. 5.3).

94 T. Fahle and K. Tiemann

3.1 Fixings Based on Feasibility

Before starting a branch-and-bound algorithm, it is helpful to identify essential tests. A
test ' € T is essential if there is a pair {7, j} of items that is only separated by 7. In
this case 7" must be part of any feasible solution to the TCP and it can be added to 7.
As described in [4] searching for essential tests can be performed in time O(m?n).

In our approach we check for essential tests in all branch-and-bound nodes. During
branching some other test as well might become the only remaining test that covers
a certain pair of items. It is thus justified to check for essential tests not only in the
root node. Using an incremental algorithm we can do so in time proportional to the
number of pairs not considered so far: Let ji(; ;1 denote the number of tests that cover
item pair {7, j}. In an initial preprocessing step we initialize ji; ;3 in time O(m?n).
For any branching decision or any fixing of tests, we decrement those entries of p that
correspond to pairs of items covered by the tests in question. Hence, in each branch-and-
bound node we can simply check whether only one test remains that covers a certain
pair of items, and we can include that test into the current solution. The number of pairs
of items not considered decreases with the depth of the search tree and is always in
O(m?). Thus, fixing essential tests in a branch-and-bound node requires time O(m?)
per node which is the time already needed by most other techniques described in Sect. 2.

3.2 Fixings Based on Costs

Additionally, we can include or exclude tests that have to be or cannot be part of an
improving solution. Let L denote a lower bound on the number of tests required to
form a valid test cover in the current branch-and-bound node, and let U denote the
value of the incumbent upper bound. (Both values are known in each node because we
already calculate them for bounding.) We order the remaining k := |T \ (7 UR)| tests
inT\ (7UR)=:{Ty,...,Tx} according to increasing costs.

If £ < L pruning criterion PC1 already prunes the current search tree. We also
prune, if the cost of all tests in 7 plus the costs of the L cheapest tests in T \ (7 UR)
exceeds the current upper bound U (PC2w).

Otherwise, we can apply the following variable fixing: If replacing one of the L
cheapest tests 7; by test 77,1 results in a value not smaller than the incumbent solution,
test T is essential for any improving solution, and thus we can fix it:

V1<:<L:
it (Crer @) + X1 o)) — (@) +eTein)) 2U (1)
then T :=T7TU{T;}

Vice versa, if already replacing test 77, by some more expensive test results in a
value not smaller than the incumbent solution, we can safely discard the latter test:

VL+1<i<k:
it (Ler o)+ X5, olTy) = o) +e(T)) > U @)
then R:=RU{T;}

Notice that these checks are only useful for the weighted case as in the unweighted
case no change in the cost structure occurs when exchanging tests.

An Improved Branch-and-Bound Algorithm 95

4 Upper Bound Computation

When interpreting a test cover problem as a set covering problem, upper bound heuris-
tics can be adapted to the test cover problem. The two-phase approach of Beasley [1]
was adapted for our work (Alg. 1). It starts with a Lagrangian lower bound x and covers
all missing item pairs by a cheapest subset. If after that phase some pairs of items are
over-covered it tries to remove those subsets that are redundant. In some experiments
we call that upper bound heuristic initially prior to any branch-and-bound.

Algorithm 1 Constructing an upper bound 2’ from a lower bound z (see [1])
e~z S —{Sp|lzx=1k=1,...,n}

/* Phase 1: Cover all items by including missing sets */
while (3 a pair of items {3, j} that is not covered by S’)
| — index(argmin{c(Sk) | Sk covers {¢,j}, k=1,...,n})
x—1; 8 S U{S}
/* Phase 2: If pairs are over-covered: Remove redundant sets */
for all (S, € S’ in order of decreasing costs)
if (8" \ {Sk} covers all pairs {4, j})
thenz) — 0; S «— &\ {Si}
return x’

5 Numerical Results

In [4] 140 benchmark sets were used to experimentally evaluate different branch-and-
bound algorithms for the TCP. These benchmark sets were constructed randomly, and
they differ with respect to the number of items m, the number of tests n, and the prob-
ability p for a test to contain a certain item (E[¢ € T;] = p). There are 10 different
instances for each of the following (m,n, p)-combinations: (49, 25, {1/4, 1/2}), (24,
50, {1/10, 1/4, 1/2}), (49, 50, {1/10, 1/4, 1/2}), (99, 50, {1/10, 1/4, 1/2}), (49, 100,
{1/10, 1/4, 1/2}). We use the same sets for the unweighted case and thus our results can
be compared to those found in the earlier work on the TCP.

For the weighted case these instances were extended by assigning a cost value to
each test uniformly at random from the interval {1,...,n}.

All tests were performed on a Pentium 4 (1.7 GHz) running Linux 2.4.19. The al-
gorithms were coded in C++ and compiled by gcc 2.95.3 using full optimization. In the
comparison we used Ilog CPLEX 7.5 with default settings.

In their paper De Bontridder et al. note that they have not used "clever data struc-
tures for storing and retrieving information" but that a "significant speedup” could
be expected from these. Therefore, in addition to the techniques used in [4] both ap-
proaches (direct and indirect) store information needed in every branch-and-bound
node. We update this information incrementally rather than calculating it from scratch
in each node. These data include the assignment of items to the sets I, 17, ..., I7
which are needed for branching based on quality criterion D, AE, P as well as for
lower bounds L; and Ls. Furthermore, for each pair of items {i, j} not covered so far,

96 T. Fahle and K. Tiemann

we store the number of tests in T \ (7 U R) that cover {4, j}. The latter information
is needed for fixing essential tests, for the least-separated pair criterion S and for PC3.
Because the implementation in [4] always re-calculates the just mentioned values, it is
justified to assume that our implementation of the direct approach is already faster than
the original implementation used by the authors of [4].

In the following sections we compare three different approaches to solve test cover
problems, namely (a) solving the TCP directly, (b) solving the TCP indirectly by trans-
forming it to a SCP (see Sect. 1.1), and (c) solving its SCP formulation via CPLEX.
In Sect. 5.3 we elaborate more on the impact of the new cost fixing and of the up-
per bound heuristic. All figures show average runtimes in seconds and average num-
bers of branch-and-bound nodes, respectively, for the 10 instances in each
(m,n, p)-combination.

5.1 Unweighted Benchmark Sets

We have studied different combinations of pruning criteria, branching rules and quality
orderings for both branch-and-bound approaches. For the direct approach a combination
of quality criterion S(D) and lower bound L, or Ly (noted as (S (D), L1), (S(D), L2))
was found to be most efficient (this corresponds to the findings in [4]). For the indirect
approach using L, rather than L, turned out to be most efficient. Thus we use the
variant (S(D), L) in most experiments. For a detailed study on the impact of different
pruning criteria, branching rules and quality criteria we refer to the work in [4] for the
direct approach and to [11] for the indirect approach. We apply essential tests (Sect. 3.1)
in every branch-and-bound node but do not compute an upper bound with the technique
described in Sect. 4.

Figure 2 shows that both branch-and-bound approaches are between 10 — 100 times
faster than CPLEX. For instances having 49 items and 100 tests only one third of all
CPLEX runs terminated within 24 hours.

In most cases the indirect approach is about 4 times faster than the direct approach.

5.2 Weighted Benchmark Sets

On weighted benchmark sets we use pruning criteria PC1, PC2w and PC3. We do not
compute an upper bound based on a Lagrangian lower bound but we apply cost fixing
in every branch-and-bound node (see Sect. 5.3). For the direct approaches (S(D), Lo)
or (S(P), L) are the most efficient approaches. Replacing Lo by L does only slightly
reduce runtime for the smaller instances. On larger instances (49, 100, 1/10), however,
a factor of 2 is lost when using L rather than Ls.

For the indirect approach using (S(D), Lo) or (S(P), Ls) is the best choice. On
smaller instances these two settings are about three times faster than other combinations
of branching or ordering strategies. Interestingly, Fig. 3 shows that on the 10 instances
in class (49, 100, 1/10) CPLEX is able to outdo both the direct and the indirect approach
by a factor of 10 or 20, respectively, whereas on all other classes (130 instances), the
specialized algorithms prevail by up to a factor of 10.

The indirect approach is always faster than the direct one (factor 2 — 10).

An Improved Branch-and-Bound Algorithm 97

All approaches (Instances: unw., 24 objects, 50 tests) All approaches (Instances: unw., 49 objects, 25 tests)
100 T T T — T T T 10 T T T T
° DirB&B (S(D),L2) —o— ° &
5 IndB&B (S(D),L1) —B— 5
CPLEX & 28
o 10t e CPLEX PO
E ' £
£ = 1E DirB&B (S(D),L.2) —6— 4
s, 19 1 g, IndB&B (S(D),L1) ~E—
2 9 CPLEX --&-
3 3
° °
< c
8 S o01f ¥
@ [.
< <
g o001} 4 2
2 H
2 3
0.001

01 015 02 025 03 035 04 045 05

All approaches (Instances: unw., 49 objects, 50 tests)

1000 . . - 100000 —
° 6 ° DA —
8 8
8 - DirB&B (S(D),L2) —o— i []
£ 100l L IndB&B (S(D).L1) —E— g 10000 =
£ o CPLEX —6- £
é & ga 1000 g i
= 10 | El =
5 &
g g
g 2 100
o o
Q Q
8 8
2 g 10 gy]
£ £ w DirB&B (S(D),L2) —e—
g g IndB&B (S(D)L1) 5
O e S N SO = . &
01 015 02 025 03 035 04 045 05 01 015 02 025 03 035 04 045 05

All approaches (Instances: unw., 49 objects, 100 tests)

1e+06 i . . . i ‘ ‘
DirB&B (S(D),L2) ——
IndB&B (S(D),L1) —B—
100000 F IndB&B (S(D),L2) e S
CPLEX —&
10000 1
i
1000

8.
100

runtime (seconds), logarithmic scale

1 . .
01 015 02 025 03 035 04 045 05

Fig. 2. Comparing direct approach, indirect approach and CPLEX on several instances. Notice
the logarithmic scale. Lines connecting measure points are used for better readability and do not
indicate intermediate results

5.3 Impact of Cost Fixing and Upper Bound

Cost fixing as described in Sect. 3.2 reduces runtime as well as number of branching
decisions for almost all instances. As can be seen in Fig. 4 cost fixing reduces runtime
of instances (49, 50, {1/10, 1/4, 1/2}) and (99, 50, {1/10, 1/4, 1/2}) by a factor of 2 — 3,
whereas the number of branch-and-bound nodes is reduced by a factor of 3 — 5.

Also for the indirect approach, using cost fixing impacts positively on runtime as
well as on number of branch-and-bound nodes. Only between 25% — 75% of the original
runtime is needed when using cost fixing (see Fig. 5). The number of branch-and-bound
nodes is only 1/6 — 1/2 of the number of nodes when not using cost fixing. Impact of cost
fixing diminishes the more items are covered by a test. On the other hand, the number of

98 T. Fahle and K. Tiemann

All approaches (Instances: weighted, 49 objects, 25 tests) All approaches (Instances: weighted, 49 objects, 50 tests)
1.6 5 T T v T T
DirB&B (S(D),L2) —e—
1al i ® 45 . IndB&B (S(D),L1) ~—B—
. I ol CPLEX &
a2l . R) .
2 & 2 3.5
s 1r s 3f
3 @
2 08 DirB&B (S(D),L2) —e— @
o IndB&B (S(D),L1) & o
£ osf CPLEX -6~ £
€ €
2 2
0.4
0.2
ol
0.25 0.3 0.35 0.4 0.45 0.5
All approaches (Instances: weighted, 99 objects, 50 tests) All approaches (Instances: weighted, 49 objects, 100 tests)
920 T T T T T T 1000 T T T T T T T
2 DirB&B (S(D),L2) —o— ° DirB&B (S(D),L2) —o—
80 | . IndB&B (SD)L1) —&— - K] Y IndB&B (S(D),L1) —&—
A CPLEX —&- 2 CPLEX 8-
70 L - o 100
E
— ®.
8 60 f %
3 50| g 0
<2 =
v)
2 o8 -t
20 1 Y
& £ o
10 b E g
1 — B =
0 T — e S , 001 R
0.1 015 02 025 03 035 04 045 05 01 015 02 025 03 035 04 045 05

Fig. 3. Comparing the approaches on weighted benchmark sets

branch-and-bound nodes is very small already in that scenario. Experiments on larger
instances that require more branching decisions are needed in order to conclude on the
behavior of instances having many items per test.

Finding an upper bound initial to branch-and-bound as explained in Sect. 4 should
be helpful for fixing variables. In our experiments it turns out that the upper bound
heuristic typically reduces runtime by about 1% — 5%. Upper bounds thus are the least
important ingredient for a fast solver to the test cover problem, although using them
reduces runtime and number of branching nodes.

6 Conclusions

In this paper we presented a simple, yet fast data structure for test cover problems.
Experimental results show a typical speedup of up to a factor of 10 compared to an im-
plementation proposed earlier. Furthermore, we introduced cost based filtering for tests.
These techniques turned out to be quite helpful because they reduce the number of ex-
plored branch-and-bound nodes by a factor of 5 and running time by a factor of 2 — 4.

It is known that Lagrangian techniques are quite successful for set covering prob-
lems (see [1,2]). We performed initial experiments on applying Lagrangian bounds in
all nodes of the branch-and-bound tree. This modification led to a significant decrease
in the number of branch-and-bound nodes. Faster bound calculations are needed, how-
ever, to turn this decrease in tree size into a runtime improvement. Future work will
thus include investigation on Lagrangian techniques as well as experiments on larger
problem instances.

An Improved Branch-and-Bound Algorithm 99

Cost fixing DirB&B (Instances: weighted, 49 obj., 50 tests)
7 T T T T

(S(D),L2) w/o CF —e—
(S(D),L1) w/o CF -
(S(D),L2) using CF -~~~ 1
(S(D),L1) using CF 3

runtime (seconds)

B e
0 ;
01 015 02 025 03 035 04 045 05

Cost fixing DirB&B (Instances: weighted, 99 obj., 50 tests)

(S(D),L2) w/o CF —e—

100 ¢ (S(D),L1) w/o CF —m—
[W (S(D),L2) using CF o
(S(D).L1) using CF &

80 ¢

60

40

runtime (seconds)

20 B

0]
01 015 02 025 03 035 04 045 05

number of nodes

number of nodes

Cost fixing DirB&B (Instances: weighted, 49 obj., 50 tests)

120000 T T T T T T T
(S(D),L2) w/o CF —e—
(S(D),L1) w/o CF -
100000 . (S(D),L2) using CF @ |
(S(D),L1) using CF &
80000 | . |
L
60000
40000
0
20000 t
0 .
01 015 02 025 03 035 04 045 05
Cost fixing DirB&B (Instances: weighted, 99 obj., 50 tests)
600000 T T T T T T
(S(D),L2) w/o CF —e—
L (S(D),L1) w/o CF -
500000 ™. (S(D),L2) using CF o |
(S(D),L1) using CF &
400000 1
300000 b
i
200000 1
100000 4
. . ! .,

01 015 02 025 03 035 04 045 05

Fig. 4. Runtimes (left) and number of branch-and-bound nodes (right) for the direct approach
DirB&B using / not using cost fixing (CF) on instances containing 49 (top) and 99 (bottom)

items and 50 tests, respectively

Cost fixing IndB&B (Instances: weighted, 49 obj., 50 tests)

Cost fixing IndB&B (Instances: weighted, 99 obj., 50 tests)

(S(D),L2) w/o CF —e—

(S(D),L1) w/o CF -
(S(D),L2) Using CF o
(S(D),L1) using CF &= 1

runtime (seconds)

runtime (seconds)

35 ‘
(S(D),L2) w/o CF —e—
(S(D).L1) w/o CF —a—
30 - (S(D),L2) Using CF &
(S(D)L1) using CF —8

0 .
01 015 02 025 03 035 04 045 05

Fig. 5. The indirect approach IndB&B using / not using cost fixing (CF) on instances containing
50 tests and 49 (left) or 99 (right) items, respectively

Acknowledgment

We would like to thank K.M.J. De Bontridder who provided us with the original bench-

mark sets used in [4].

100

T. Fahle and K. Tiemann

References

10.

11.

J.E. Beasley. A Lagrangian Heuristic for Set-Covering Problems. Naval Research Logistics,
37:151-164, 1990.

A. Caprara, M. Fischetti, P. Toth. Algorithms for the Set Covering Problem. Annals of
Operations Research, 98:353-371, 2001.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Co., 1979.
K.M.J. De Bontridder, B.J. Lageweg, J.K. Lenstra, J.B. Orlin, L. Stougie. Branch-and-Bound
Algorithms for the Test Cover Problem. Proceedings of ESA 2002, Rome/Italy. Springer
LNCS 2461, pp. 223-233, 2002.

B.V. Halldérsson, M.M. Halldérsson, R. Ravi. On the Approximability of the Minimum
Test Collection Problem. Proceedings of ESA 2001, Arhus/Denmark. Springer LNCS 2161,
pp. 158-169, 2001.

M. Held and R.M. Karp. The Traveling-Salesman Problem and Minimum Spanning Trees:
Part II. Mathematical Programming, 1:6-25, 1971.

B. Moret and H. Shapiro. On Minimizing a Set of Tests. SIAM Journal on Scientific and
Statistical Computing, 6:983—-1003, 1985.

R.W. Payne. Selection Criteria for the Construction of Efficient Diagnostic Keys. Journal of
Statistical Planning and Information, 5:27-36, 1981.

E.W. Rypka, W.E. Clapper, I.G. Brown, R. Babb. A Model for the Identification of Bacteria.
Journal of General Microbiology, 46:407-424, 1967.

E.W. Rypka, L. Volkman, E. Kinter. Construction and Use of an Optimized Identification
Scheme. Laboratory Magazine, 9:32—41, 1978.

K. Tiemann. Ein erweiterter Branch-and-Bound-Algorithmus fiir das Test-Cover Problem.
Bachelor-Thesis (in German), University of Paderborn, 2002.

Degree-Based Treewidth Lower Bounds*

Arie M.C.A. Koster!, Thomas Wolle?, and Hans L. Bodlaender?

! Zuse Institute Berlin (ZIB),
Takustrafle 7, D-14194 Berlin, Germany
koster@zib.de
2 Institute of Information and Computing Sciences,
Utrecht University P.O. Box 80.089,

3508 TB Utrecht, The Netherlands

{thomasw, hansb}@cs.uu.nl

Abstract. Every lower bound for treewidth can be extended by taking
the maximum of the lower bound over all subgraphs or minors. This ex-
tension is shown to be a very vital idea for improving treewidth lower
bounds. In this paper, we investigate a total of nine graph parameters,
providing lower bounds for treewidth. The parameters have in common
that they all are the vertex-degree of some vertex in a subgraph or minor
of the input graph. We show relations between these graph parameters
and study their computational complexity. To allow a practical compar-
ison of the bounds, we developed heuristic algorithms for those param-
eters that are N P-hard to compute. Computational experiments show
that combining the treewidth lower bounds with minors can considerably
improve the lower bounds.

1 Introduction

Many combinatorial optimisation problems take a graph as part of the input.
If this graph belongs to a specific class of graphs, typically more efficient al-
gorithms are available to solve the problem, compared to the general case. In
case of trees for example, many N P-hard optimisation problems can be solved
in polynomial time. Over the last decades, it has been shown that many N P-
hard combinatorial problems can be solved in polynomial time for graphs with
treewidth bounded by a constant. Until recently, it was assumed that these re-
sults were of theoretical interest only. By means of the computation of so-called
exact inference in probabilistic networks [17] as well as the frequency assign-
ment problem [15] in cellular wireless networks, it has been shown that such an
algorithm to compute the optimal solution can be used in practice as well.

* This work was partially supported by the DFG research group ” Algorithms, Struc-
ture, Randomness” (Grant number GR 883/9-3, GR 883/9-4), and partially by the
Netherlands Organisation for Scientific Research NWO (project Treewidth and Com-
binatorial Optimisation).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 101-112, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

102 A.M.C.A. Koster, T. Wolle, and H.L. Bodlaender

Polynomial time algorithms for solving combinatorial problems on a graph
of bounded treewidth consist of two steps: (i) the construction of a tree decom-
position of the graph with width as small as possible, and (ii) the application
of dynamic programming on the tree decomposition to find the optimal solution
of the combinatorial problem. Whereas the first step can be applied without
knowledge of the application, the second step requires the development of an
algorithm tailor-made for the specific application.

To exploit the full potential of tree decomposition approaches for as many
combinatorial problems as possible, the first step is of fundamental importance.
The smallest possible width of a tree decomposition is known as the treewidth of
the graph. Computing the treewidth is however N P-hard [1]. To advance towards
tree decompositions with close-to-optimal width, research in recent years has
been carried out on practical algorithms for reduction and decomposition of the
input graph [5, 6, 11], upper bounds [10, 9, 14], lower bounds [4, 7, 10, 18, 20], and
exact algorithms (e.g. [12]).

In this paper, we research treewidth lower bounds that are based on the de-
gree of specific vertices. Good treewidth lower bounds can be utilised to decrease
the running time of branch-and-bound algorithms (see e.g. [12]). The better the
lower bounds, the bigger the branches that can be pruned in a branch-and-bound
method. Furthermore, treewidth lower bounds are useful to estimate the running
times of dynamic programming methods that are based on tree decompositions.
Such methods have running times that are typically exponential in the treewidth.
Therefore, a large lower bound on the treewidth of a graph implies only little
hope for an efficient dynamic programming algorithm based on a tree decompo-
sition of that graph. In addition, lower bounds in connection with upper bounds
help to assess the quality of these bounds.

Every lower bound for treewidth can be modified by taking the maximum
of the lower bound over all subgraphs or minors. In [7, 8] this idea was used to
obtain considerable improvements on two lower bounds: the minimum degree of
a graph and the MCSLB lower bound by Lucena [18].

In this paper, we extend our research efforts to improve the quality of fur-
ther known lower bounds in this way. One lower bound for treewidth is given by
the second smallest degree, another one by the minimum over all non-adjacent
pairs of vertices of the maximum degree of the vertices (cf. Ramachandra-
murthi [20]). Altogether, we examine nine parameters (defined in Section 2)
and determine some relationships between them (see Section 3.1). We show
that the second smallest degree over all subgraphs is computable in polyno-
mial time, whereas the parameters for other combinations are N P-hard to com-
pute (see Section 3.2). In this extended abstract, however, we omit full proofs.
For the parameters that are N P-hard to compute, we develop several algo-
rithms in Section 4.2 to obtain treewidth lower bounds heuristically. A compu-
tational evaluation (Section 4.3 and 4.4) of the algorithms shows that the heuris-
tics where we combine a lower bound with edge contraction outperforms other
strategies.

Degree-Based Treewidth Lower Bounds 103

2 Preliminaries and Graph Parameters

Throughout the paper G = (V, E) denotes a simple undirected graph. Unless
otherwise stated, n(G) (or simply n) denotes the number of vertices in G, i.e. n :=
|[V|, and m(G) (or simply m) denotes the number of edges m := |E|. Most
of our terminology is standard graph theory/algorithm terminology. The open
neighbourhood Ng(v) or simply N(v) of a vertex v € V is the set of vertices
adjacent to v in G. As usual, the degree in G of vertex v is dg(v) or simply d(v),
and we have d(v) = |N(v)]. N(S) for S C V denotes the open neighbourhood of
S,ie. N(S)=U,es N(s)\ S.

Subgraphs and Minors. After deleting vertices of a graph and their incident
edges, we get an induced subgraph. A subgraph is obtained, if we additionally
allow deletion of edges. (We use G’ C G to denote that G’ is a subgraph of G.)
If we furthermore allow edge-contractions, we get a minor (denoted as G’ < G,
if G’ is a minor of G). Contracting edge e = {u,v} in the graph G = (V, E)
is the operation that introduces a new vertex a. and new edges such that a. is
adjacent to all the neighbours of u and v, and deletes vertices v and v and all
edges incident to u or v.

Treewidth. The notions treewidth and tree decomposition were introduced by
Robertson and Seymour in [21]. A tree decomposition of G = (V, E) is a pair
{Xi|iel}, T =(,F)), with {X; | i € I} a family of subsets of V and T
a tree, such that each of the following holds: |J,.; X; = V; for all {v,w} € E,
there is an ¢ € I with v,w € X;; and for all ig,iy,i2 € I: if i1 is on the path
from iy to i in T, then X;, N X;, € X,,. The width of tree decomposition
{X;|ielI}, T =(I,F)) is max;es | X;| — 1. The treewidth tw(G) of G is the
minimum width among all tree decompositions of G. The following lemma is
well known and an important fact for proving the parameters, considered in this
paper, to be treewidth lower bounds.

Lemma 1 (see e.g. [3]). If G’ is a minor of G, then tw(G') < tw(G).

Graph Parameters. We consider a number of graph parameters in this paper,
all lower bounds on the treewidth of a graph, cf. Section 3. The minimum degree
0 of a graph G is defined as usual: §(G) := min,cy d(v)

The §-degeneracy or simply the degeneracy §D of a graph G is defined in [2]
to be the minimum number s such that G' can be reduced to an empty graph
by the successive deletion of vertices with degree at most s. It is easy to see
that this definition of the degeneracy is equivalent (see [24]) to the following
definition: dD(G) := maxg {d(G’') | G' C G An(G’') > 1} The treewidth of
G is at least its degeneracy (see also [14]). The d-contraction degeneracy or
simply the contraction degeneracy dC of a graph G was first defined in [7]. In-
stead of deleting a vertex v of minimum degree, we contract it to a neighbour
u, i.e. we contract the edge {u,v}. This has been proven to be a very vital
idea for obtaining treewidth lower bounds [7,8]. The contraction degeneracy

104 A.M.C.A. Koster, T. Wolle, and H.L. Bodlaender

is defined as the maximum over all minors G’ of G of the minimum degree:
0C(G) :=maxg {06(G") | G' < GAn(G'") > 1}

Let be given an ordering vy, ..., v, of the vertices of G with n > 2, such that
d(v;) < d(vig1), for all i € {1,...,n—1}. The second smallest degree d of a graph
G is defined as: §3(G) := d(vz) Note that it is possible that 6(G) = d2(G). Similar
to the d-degeneracy and J-contraction-degeneracy we define the Jo-degeneracy
and dp-contraction-degeneracy. The do-degeneracy 02D of a graph G = (V, E)
with n > 2 is defined as follows: 2 D(G) := maxg{62(G’) | G' C G An(G') >
2} The §3-contraction degeneracy 62C of a graph G = (V, E) with n > 2 is:
02C(G) :== maxg {62(G") | G' = G An(G') > 2}

In [19,20], Ramachandramurthi introduced the parameter v5(G) of a graph
G and proved that this is a lower bound on the treewidth of G. vr(G) :=
min(n — 1, min, wev,v£w, {v,wige max(d(v),d(w))) Note that yr(G) = n — 1 if
and only if G is a complete graph on n vertices. Furthermore, note that vz(G) is
determined by a pair {v,w} € E with max(d(v), d(w)) is as small as possible. We
say that {v, w} is a non-edge determining vz (G), and if d(v) < d(w) then we say
that w is a vertex determining vz (G). Once again, we define the ‘degeneracy’ and
‘contraction degeneracy’ versions also for the parameter yg. The vr-degeneracy
YrD(G) of a graph G = (V, E) with n > 2 is defined as follows: ygD(G) :=
maxg {Yr(G") | G’ € GAn(G") > 2} The yg-contraction degeneracy yrC(G) of
a graph G = (V, E) with n > 2 is defined as: ygC(G) := maxg {vr(G’) | G’ =
G An(G") > 2}.

3 Theoretical Results

3.1 Relationships Between the Parameters

Lemma 2. For a graph G = (V,E) with |V| > 2, x € {d,02,vr} and X €
{D,C}, each of the following holds:

5(G) < 52(C) < 8 (C) < tw(C)

z(G) < zD(G) < zC(G) < tw(Q)
0X(G) < 5X(G) <vrX(G) < tw(G)
5 X(G) <6X(G)+1

X (C) < 2-5,X(C)

Guds o~

It follows directly from Lemma 2 that all the parameters defined in Section 2
are lower bounds for treewidth. Furthermore, we see that the gap between the
parameters 0D and 2D, and between 6C and 02C can be at most one (see
Lemma 2). In Section 3.2, we will see that d.D can be computed in polynomial
time. Therefore, Lemma 2 gives us a 2-approximation algorithm for computing
the parameter ygrD. Also in Section 3.2, we will see that ygD is N P-hard to
compute.

The next lemma shows some interesting properties of the parameter yr, when
given a vertex sequence sorted according to non-decreasing degree.

Degree-Based Treewidth Lower Bounds 105

Lemma 3. Let be given a graph G on n vertices with G # K,,. Furthermore,
let be given an ordering vi,...,v, of V(QG), such that d(v;) < d(viy1), for all
i€{l,..,n—1}. Wedefinej:=min{i € {1,...,n} | € {1,...,i-1} : {v,vu} &
E(G)}. Then we have:

1. d(v;) = vr(G)
2. vi,...,vj—1 form a clique in G

3.2 Computational Complexity of the Parameters

A Bucket Data Structure

In this section, we briefly describe a data structure that can be used in many of
our algorithms. A more detailed description can be found in [24]. We extend the
standard adjacency-list data structure of a graph G = (V, E) in the following
way. We store in doubly linked lists the adjacent vertices for every vertex of the
graph, and we also use cross pointers for each edge {v;,v;} (i.e. a pointer between
vertex v; in the adjacency-list for vertex v; and vertex v; in the adjacency-list
for vertex v;). In addition to this advanced-adjacency-list, we create n = |V|
buckets that can be implemented by doubly-linked lists By, ..., B,_1. List By
contains exactly those vertices with degree d. We maintain a pointer p(v) for
every vertex v that points to the exact position in the list B, that contains v
for the appropriate d.

Lemma 4 (see [24]). Let be given a graph G = (V,E) with n = |V| and
m = |E|. An algorithm performing a sequence of O(n) vertex deletions and
searches for a vertex with smallest or second smallest degree can be implemented
to use O(n +m) time.

Known Results

It is easy to see that §(G) and d3(G) can be computed in O(n + m) time. Also
the parameter yr(G) can be computed in O(n+m) time, see [19] or Section 4.1.
Interestingly enough, the definition of the degeneracy as in [2] (see also Section 2)
reflects an algorithm to compute this parameter: Successively delete a vertex of
minimum degree and return the maximum of the encountered minimum degrees.
Using the data structure described in this section, 6 D(G) can be computed in
time O(n + m). Computing 6C is N P-hard as is shown in [7].

62D Is Computable in Polynomial Time

A strategy to compute doD is as follows. We can fix a vertex v of which we
suppose it will be the vertex of minimum degree in a subgraph G’ of G with
02(G") = 62D(G). Starting with the original graph, we successively delete a
vertex in V(H) \ {v} of smallest degree, where H is the current considered
subgraph of G (initially: H = G). Since we do not know whether our choice of
v was optimal, doing this for all vertices v € V leads to a correct algorithm to
compute d D(G). Using the bucket data structure, described above, this method

106 A.M.C.A. Koster, T. Wolle, and H.L. Bodlaender

Fig. 1. An overview of some theoretical results

can be implemented to take O(n-m) time. We call this algorithm Delta2D. The
following pseudo-code makes this algorithm more precise.

Algorithm Delta2D

delta2D =0
for each v € V do
H: =G
repeat
if 62(H) > delta2D then delta2D := 62(H) endif
V= V(H)\ {0}
letuc{weV*| Zw e V* idy(w') < du(w)}
H = HIV(H)\ {u}]
until |V(H)| =1
endfor
return delta2D

e
= O © 00 ~NO 0Ok WN =

[y

Lemma 5. Algorithm Delta2D computes doD(G) and can be implemented to
run in O(n - m) time, for a given connected graph G = (V, E) with |V| > 2.

N P-completeness Results

Here, we will state the computational hardness of the decision problems corre-
sponding to the parameters ygr D, ygC and d2C.

Theorem 1. Let G be a graph, G’ be a bipartite graph and k be an integer.
Each of the following is N P-complete to decide: yr D(G) > k, yrC(G'") > k and
02C(G) > k.

Figure 1 represents some of the theoretical results. A thick line between
two parameters indicates that the parameter below is smaller or equal to the

Degree-Based Treewidth Lower Bounds 107

parameter above, as stated by Lemma 2. The thin line marks the border between
polynomial computability and N P-hardness of the corresponding parameters
(see Theorem 1 and other results in Section 3.2).

4 Experimental Results

In this section, we describe exact and heuristic algorithms, which we used in our
experiments to compute the corresponding parameters.

4.1 Exact Algorithms

An implementation of algorithms to compute § and ds is straightforward. It is
obvious that, in linear time, both parameters can be computed exactly. The
parameters §D and d5D were computed as described in Section 3.2. Ramachan-
dramurthi shows in [19] that v can be computed in O(n + m) time. In our
experiments, we use a different algorithm that does not use an adjacency ma-
trix. See the full version of this article ([16]) for more details.

4.2 Heuristics

For the parameters that are N P-hard to compute, we have developed heuristics
some of which are based on the polynomial counterparts.

vyr-degeneracy: For the vy D, we developed three heuristics based on the follow-
ing observation: Let vy, ..., v, be a sorted sequence of the vertices according to
non-decreasing degree in G, and let yg(G) be determined by v; for some j > 1
(see Lemma 3). Thus, v; is not adjacent to some vertex vy with k < j, whereas
1, ...,v;—1 induce a clique in G. Let V' be the set of all vertices v; with i < j
and {v;,v,;} € E. Now, for any subgraph G’ C G with ({v;} UV’) C V(G’), we
have that yr(G’) < vr(G). Hence, only subgraphs without either v; or V' are
of further interest. Based on this observation, we implemented two heuristics.
In the heuristic ygD-left, we remove the vertices in V' (the vertices that are
more to the left in the sequence) from the graph and continue. Whereas in the
heuristic yg D-right, we delete the vertex v; (the vertex that is more to the right
in the sequence) and go to the next iteration.

d-contraction degeneracy: For computing lower bounds for §C, we have exam-
ined various strategies for contraction in [7]. The most promising one has been
to recursively contract a vertex of minimum degree with a neighbour that has
the least number of common neighbours (denoted as the least-c strategy).

do-contraction degeneracy: For 65C we implemented three heuristic algorithms.
The first one, all-v is based on the polynomial time implementation for dD.
We fix all vertices once at a time and perform the §C heuristic (with least-c
strategy) on the rest of the graph. The best second smallest degree recorded
provides a lower bound on d2C. The other two Jd,C-heuristics are based on

108 A.M.C.A. Koster, T. Wolle, and H.L. Bodlaender

the algorithms for §C'. Instead of recording the minimum degree we also can
record the second smallest degree (Maximum Second Degree with contraction,
abbreviated as MSD+). If we contract a vertex of minimum degree with one
of its neighbours (according to the least-c strategy), we obtain the algorithm
MSD+1. If the vertex of second smallest degree is contracted with one of its
neighbours (also according to the least-c strategy), we obtain the algorithm
MSD+2.

vr-contraction degeneracy: For ygrC' the same strategies as for vz D have been
implemented. The only difference is that instead of removing all vertices in V"’ or
vj, we contract each of the vertices with a neighbour that is selected according
to the least-c strategy. Inspired by the good results of the ‘65C all-v’ heuristic,
we furthermore implemented the all-v strategy as described above also for the
yr-contraction degeneracy. The difference is that instead of computing d- of each
obtained minor, we now compute yg.

4.3 Experiments

The algorithms and heuristics described above have been tested on a large num-
ber of graphs from various application areas such as probabilistic networks,
frequency assignment, travelling salesman problem and vertex colouring (see
e.g. [7,8] for details). All algorithms have been written in C++, and the com-
putations have been carried out on a Linux operated PC with a 3.0 GHz Intel
Pentium 4 processor. Many of the tested graphs as well as most of the exper-
imental results on their treewidth (from, among others, [7,8] and this article)
can be obtained from [23].

In the tables below, we present the results for some selected instances only.
The result of these representative instances reflect typical behaviour for the
whole set of instances. The best known upper bound for treewidth (see [14]) is
reported in the column with title UB. Columns headed by LB give treewidth
lower bounds in the terms of the according parameter or a lower bound for the
parameter. The best lower bounds in the tables are highlited in bold font. Values
in columns headed by CPU are running times in seconds.

Table 1 shows the sizes of the graphs, and the results obtained for the
treewidth lower bounds without contraction. These bounds are the exact pa-
rameters apart from the values for the two yg D-heuristics. As the computation
times for 0, d2 and g are negligible, we omit them in the table. Also the §D
can be computed within a fraction of a second. The computational complexity
of 92D is O(n) larger than the one of D which is reflected in the CPU times
for this parameter.

Table 2 shows the results for the same graphs as in Table 1. Furthermore, in
Table 2, we give the treewidth lower bounds according to the parameters that
involve contraction. For C, we only give the results of the least-c strategy, as
this seems to be the most promising one (see [7]). For 62C and vgC, the results
of the heuristics as described in Section 4.2 are shown.

Degree-Based Treewidth Lower Bounds 109

Table 1. Graph sizes, upper bounds and lower bounds without contractions

instance size 6 02 Yr oD 02D YrD
left right

LB CPU LB CPU LB CPU LB CPU
4 0.01 4 3.67 4 0.01 4 0.01
4 0.00 4 0.23 4 0.00 4 0.00
3 001 3 6.70 3 0.02 3 0.01
4 0.04 469.87 4 0.04 4 0.05
10
1
6
3

Vi |E] TUB LB L

link 724 1738 13 0
muninl 189 366 11 1
munind 1044 1745 7 1
pignet2 3032 7264 135 2
1

3

3

3

1

celar06 100 350 11
celarO7pp 162 764 18
graph04 200 734 55
r15934-pp 904 1800 23

0.01 11 0.08 11 0.00 10 0.00
0.01 12 0.27 12 0.00 11 0.01
0.01 6 036 6 0.00 6 0.00
0.01 3 533 3 0.01 3 0.01
schooll 38519095 188 73 0.04 74 7.89 75 0.03 73 0.03
schooll-nsh 35214612 162 1 1 61 0.02 62 5.69 62 0.03 61 0.02
zeroin.i.1 126 4100 50 28 29 32 48 0.00 48 0.58 50 0.01 50 0.01

LB L
0
1
1
2
1
31
3
3
1
1

Table 2. Treewidth lower bounds with contraction

instance oC 6:C vrC

least-c all-v MSD+1 MSD+2 left right all-v

LBCPU LB CPU LBCPU LBCPU LBCPU LBCPU LB CPU
link 11 0.02 12 17.27 11 0.02 11 0.03 11 0.02 12 0.02 12 150.13
muninl 10 0.01 10 0.58 10 0.00 10 0.00 9 0.01 10 0.00 10 3.07
munind 7 0.01 7 1320 7 001 7 0.02 7 0.01 7 0.02 7 312.92
pignet2 38 0.11 40369.00 39 0.12 39 0.14 38 0.12 39 0.12 4011525.1
celar06 11 0.00 11 0.16 11 0.01 11 0.00 11 0.00 11 0.00 11 0.30

celarO7pp 15 0.00 15 0.77 15 0.01 15 0.01 15 0.00 15 0.01 15 2.08
graph(04 20 0.01 20 2.72 20 0.01 19 0.01 20 0.02 19 0.01 21 4.78
r15934-pp 5002 6 3612 5002 5003 5003 6002 6 221.72
schooll 122 0.48 124180.30 123 0.48 122 0.51 122 0.45 122 0.49 125 215.35
schooll-nsh 106 0.37 108 173.51 106 0.35 107 0.38 104 0.34 106 0.36 108 146.19
zeroin.i.1 50 0.03 50 6.25 50 0.03 50 0.03 50 0.03 50 0.03 50 5.43

4.4 Discussion

The results of algorithms and heuristics that do not involve edge-contractions
(Table 1) show that the degeneracy lower bounds (i.e. the lower bounds involv-
ing subgraphs) are significantly better than the simple lower bounds, as could
be expected. Comparing the results for 6D and d2 D, we see that in four cases we
have that 02D = §D + 1. In the other seven cases do.D = 0D. Bigger gaps than
one between D and d2D are not possible (confirm Lemma 2). In some cases
other small improvements (compared to 6D and d5D) could be obtained by the
heuristics for vz D. The two ygD-heuristics are all comparable in value and run-
ning times. Apart from the running times for computing 2D, the computation
times are in all cases marginal, which is desirable for methods involving com-
puting lower bounds many times (e.g. branch & bound). Even though the 62D

110 A.M.C.A. Koster, T. Wolle, and H.L. Bodlaender

algorithm has much higher running times than the other algorithms in Table 1,
it is still much faster than some heuristics with contraction. Furthermore, we
expect that its running time could be improved by a more efficient implementa-
tion. No further investigations about parameters without contraction have been
carried out as the parameters with contraction are of considerably more interest.

We can see that when using edge-contractions, the treewidth lower bounds
can be significantly improved (compare Table 2 with Table 1). The results show
that values for §,C are typically equal or only marginal better than the value for
6C'. The same is true for ygC with respect to d5C. The best results are obtained
by the most time consuming algorithms: §oC and yrC' with all-v strategy. By
construction of the heuristic for ygC with all-v strategy, it is clear that it is at
least as good as the heuristic for JoC with all-v strategy. Sometimes, it is even
a little bit better. As in the case of the d, D algorithm, the computation times
of the §,C and yrC' heuristics with all-v strategy could probably be improved
by more efficient implementations. The other strategies for JoC and yrC are
comparable in value and running times. No clear trend between them could be
identified. In a few cases, we can observe that the gap between 6C and 65C
is more than one. This does not contradict Lemma 2, because the considered
values are not the exact values. Different strategies for heuristics can result in
different values with larger gaps between them. With the same argument, we
can explain that in a few cases lower bounds of one parameter that in theory is
at least as good as another parameter can be smaller than lower bounds of the
other parameter.

As said above, using g instead of dy in the degeneracy and contraction
degeneracy heuristics, gives only small improvements in some cases. Therefore,
the ratio of two between those parameters as stated in Lemma 2 is far from
the ratios observed in our experiments. Proving a smaller ratio and/or finding a
graph with ratio as large as possible, remains a topic for further research.

It was already remarked in [7] that the d-contraction degeneracy of a planar
graph can never be larger than 5. In fact, we have that 6C(G) < 6:C(G) <
~v(G) +5, where v denotes the genus of a graph (see [24]). This behaviour can be
observed in our experiments, e.g. for the graph r15934-pp, which is expected to
be nearly planar. However, the yr-contraction degeneracy might be larger than
v(G) + 5.

5 Conclusions

In this article, we continued our research in [7] on degree-based treewidth lower
bounds, where we combined the minimum degree lower bound with subgraphs
and edge-contraction/minors. Here, we applied this combination to two other
treewidth lower bounds, namely the second smallest degree lower bound and the
Ramachandramurthi lower bound [19].

We obtained theoretical results showing how the parameters are related to
each other. We also examined the computational complexity of the parame-
ters. Here, it is interesting to note that all contraction degeneracy problems are

Degree-Based Treewidth Lower Bounds 111

N P-hard, while the degeneracy problems are polynomial, except for the vyg-
degeneracy, which has been shown to be N P-hard.

In our experiments, we could observe potent improvements when compar-
ing the simple parameters with their degeneracy counterparts. An even bigger
improvement was achieved when edge-contractions were involved. Therefore, we
can conclude that the incorporation of contraction improves the lower bounds
for treewidth considerably. However, the added value of §2C and vgC' in com-
parison to dC' is from a practical perspective marginal. The best lower bounds
for 9oC' and ygrC' were obtained by heuristics with considerably long running
times. Hence, if the lower bound has to be computed frequently, e.g. within a
branch-and-bound algorithm, it is advisable to first compute a lower bound for
0C, and only in tight cases using a slower but hopefully better lower bound.

It remains an interesting topic to research other treewidth lower bounds that
can be combined with minors, in the hope to obtain large improvements. Further-
more, good lower bounds for graphs with bounded genus are desirable, because
lower bounds based on §, do or v do not perform very well on such graphs
(see [24]). However, treewidth lower bounds for planar graphs (i.e. graphs with
genus zero) can be obtained e.g. by computing the branchwidth of the graph
(see [13,22]).

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

2. M. Behzad, G. Chartrand, and L. Lesniak-Foster. Graphs and Digraphs. Pindle,
Weber & Schmidt, Boston, 1979.

3. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1-45, 1998.

4. H. L. Bodlaender and A. M. C. A. Koster. On the Maximum Cardinality Search
lower bound for treewidth. In J. Hromkovi¢, M. Nagl, and B. Westfechtel, editors,
Proc. 30th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence WG 2004, pages 81-92. Springer-Verlag, Lecture Notes in Computer Science
3353, 2004.

5. H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. In Pro-
ceedings 6th Workshop on Algorithm Engineering and Experiments ALENEXO04,
pages 70-78, 2004.

6. H. L. Bodlaender, A. M. C. A. Koster, F. v. d. Eijkhof, and L. C. van der Gaag. Pre-
processing for triangulation of probabilistic networks. In J. Breese and D. Koller,
editors, Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence,
pages 32-39, San Francisco, 2001. Morgan Kaufmann.

7. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth
lower bounds. In S. Albers and T. Radzik, editors, Proceedings 12th Annual Euro-
pean Symposium on Algorithms, ESA200/, pages 628-639. Springer, Lecture Notes
in Computer Science, vol. 3221, 2004.

8. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth
lower bounds. Technical Report UU-CS-2004-34, Dept. of Computer Science,
Utrecht University, Utrecht, The Netherlands, 2004.

112

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

A.M.C.A. Koster, T. Wolle, and H.L. Bodlaender

F. Clautiaux, S. N. A. Moukrim, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Oper. Res., 38:13-26, 2004.

F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds
for graph treewidth. In J. D. P. Rolim, editor, Proceedings International Work-
shop on Ezperimental and Efficient Algorithms, WEA 2003, pages 70-80. Springer
Verlag, Lecture Notes in Computer Science, vol. 2647, 2003.

F. v. d. Eijkhof and H. L. Bodlaender. Safe reduction rules for weighted treewidth.
In L. Kucera, editor, Proceedings 28th Int. Workshop on Graph Theoretic Concepts
in Computer Science, WG’02, pages 176-185. Springer Verlag, Lecture Notes in
Computer Science, vol. 2573, 2002.

V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In
proceedings UAT’04, Uncertainty in Artificial Intelligence, 2004.

I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal
on Computing (to appear, 2005).

A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Com-
putational experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors,
Electronic Notes in Discrete Mathematics, volume 8. Elsevier Science Publishers,
2001.

A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial
constraint satisfaction problems with tree decomposition. Networks, 40:170-180,
2002.

A. M. C. A. Koster, T. Wolle, and H. L. Bodlaender. Degree-based treewidth
lower bounds. Technical Report UU-CS-2004-050, Institute for Information and
Computing Sciences, Utrecht University, Utrecht, The Netherlands, 2004.

S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological), 50:157-224, 1988.

B. Lucena. A new lower bound for tree-width using maximum cardinality search.
SIAM J. Disc. Math., 16:345-353, 2003.

S. Ramachandramurthi. Algorithms for VLSI Layout Based on Graph Width
Metrics. PhD thesis, Computer Science Department, University of Tennessee,
Knoxville, Tennessee, USA, 1994.

S. Ramachandramurthi. The structure and number of obstructions to treewidth.
SIAM J. Disc. Math., 10:146-157, 1997.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7:309-322, 1986.

P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217-241, 1994.

Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004-03-31.

T. Wolle, A. M. C. A. Koster, and H. L. Bodlaender. A note on contraction degen-
eracy. Technical Report UU-CS-2004-042, Institute of Information and Computing
Sciences, Utrecht University, Utrecht, The Netherlands, 2004.

Inferring AS Relationships:
Dead End or Lively Beginning?

Xenofontas Dimitropoulos!-2, Dmitri Krioukov?, Bradley Huffaker?,
ke claffy?, and George Riley!

1 School of Electrical and Computer Engineering,
Georgia Institute of Technology,
Atlanta, Georgia 30332-0250
{fontas, riley}@ece.gatech.edu
2 Cooperative Association for Internet Data Analysis (CAIDA),
La Jolla, California 92093-0505
{dima, brad, kc}@caida.org

Abstract. Recent techniques for inferring business relationships be-
tween ASs [1,2] have yielded maps that have extremely few invalid BGP
paths in the terminology of Gao [3]. However, some relationships in-
ferred by these newer algorithms are incorrect, leading to the deduction
of unrealistic AS hierarchies. We investigate this problem and discover
what causes it. Having obtained such insight, we generalize the problem
of AS relationship inference as a multiobjective optimization problem
with node-degree-based corrections to the original objective function of
minimizing the number of invalid paths. We solve the generalized ver-
sion of the problem using the semidefinite programming relaxation of
the MAX2SAT problem. Keeping the number of invalid paths small, we
obtain a more veracious solution than that yielded by recent heuristics.

1 Introduction

As packets flow in the Internet, money also flows, not necessarily in the same di-
rection. Business relationships between ASs reflect both flows, indicating a direc-
tion of money transfer as well as a set of constraints to the flow of traffic. Knowing
AS business relationships is therefore of critical importance to providers, ven-
dors, researchers, and policy makers, since such knowledge sheds more light on
the relative “importance” of ASs.

The problem is also of multidimensional interest to the research community.
Indeed, the Internet AS-level topology and its evolutionary dynamics result from
business decisions among Internet players. Knowledge of AS relationships in the
Internet provides a valuable validation framework for economy-based Internet
topology evolution modeling, which in turn promotes deeper understanding of
the fundamental laws driving the evolution of the Internet topology and its
hierarchy.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 113-125, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

114 X. Dimitropoulos et al.

Unfortunately, the work on inferring AS relationships from BGP data has
recently encountered difficulties. We briefly describe this situation in its historical
context.

Gao introduces the AS relationship inference problem in her pioneering pa-
per [3]. This work approximates reality by assuming that any AS-link is of
one of the following three types: customer-provider, peering, or sibling. If all
ASs strictly adhere to import and export policies described in [3], then every
BGP path must comply with the following hierarchical pattern: an uphill seg-
ment of zero or more customer-to-provider or sibling-to-sibling links, followed by
zero or one peer-to-peer links, followed by a downhill segment of zero or more
provider-to-customer or sibling-to-sibling links. Paths with the described hierar-
chical structure are deemed walid. After introducing insight about valid paths,
Gao proposes an inference heuristic that identifies top providers and peering
links based on AS degrees and valid paths.

In [4], Subramanian et al. (SARK) slightly relax the problem by not infer-
ring sibling links, and introduce a more consistent and elegant mathematical
formulation. The authors render the problem into a combinatorial optimization
problem: given an undirected graph G derived from a set of BGP paths P, assign
the edge type (customer-provider or peering) to every edge in G such that the
total number of valid paths in P is maximized. The authors call the problem
the type-of-relationship (ToR) problem, conjecture that it is NP-complete, and
provide a simple heuristic approximation.

Di Battista et al. (DPP) in [1] and independently Erlebach et al. (EHS) in [2]
prove that the ToR problem is indeed NP-complete. EHS prove also that it is even
harder, specifically APX-complete.! More importantly for practical purposes,
both DPP and EHS make the straightforward observation that peering edges
cannot be inferred in the ToR problem formulation. Indeed, as the validation
data presented by Xia et al. in [5] indicates, only 24.63% of the validated SARK
peering links are correct.

Even more problematic is the following dilemma. DPP (and EHS) come
up with heuristics that outperform the SARK algorithm in terms of produc-
ing smaller numbers of invalid paths [1,2]. Although these results seem to be a
positive sign, closer examination of the AS relationships produced by the DPP
algorithm [6] reveals that the DPP inferences are further from reality than the
SARK inferences. In the next section we show that improved solutions to the ToR
problem do not yield practically correct answers and contain obviously misiden-
tified edges, e.g. well-known global providers appear as customers of small ASs.
As a consequence, we claim that improved solutions to the unmodified ToR
problem do not produce realistic results.

An alternative approach to AS relationship inference is to disregard BGP
paths and switch attention to other data sources (e.g. WHOIS) [7, 8], but noth-

! There exists no polynomial-time algorithm approximating an APX-complete
problem above a certain inapprozimability limit (ratio) dependent on the partic-
ular problem.

Inferring AS Relationships: Dead End or Lively Beginning? 115

ing suggests that we have exhausted all possibilities of extracting relevant infor-
mation from BGP data. Indeed, in this study we seek to answer the following
question: can we adjust the original (ToR) problem formulation, so that an algo-
rithmic solution to the modified problem would yield a better answer from the
practical perspective?

The main contribution of this paper is that we positively answer this question.
We describe our approach and preliminary results in the subsequent two sections,
and conclude by describing future directions of this work.

2 Methodology

2.1 Inspiration Behind Our Approach

The main idea behind our approach is to formalize our knowledge regarding why
improved solutions to the ToR problem fail to yield practically right answers.
To this end we reformulate the ToR problem as a multiobjective optimization
problem introducing certain corrections to the original objective function. We
seek a modification of the original objective function, such that the minimum of
the new objective function reflects an AS relationship mapping that is closer to
reality.

2.2 Mapping to 2SAT

To achieve this purpose, we start with the DPP and EHS results [1, 2] that deliver
the fewest invalid paths. Suppose we have a set of BGP paths P from which we
can extract the undirected AS-level graph G(V, E). We introduce direction to
every edge in F from the customer AS to the provider AS. Directing edges in F
induces direction of edges in P. A path in P is valid if it does not contain the
following invalid pattern: a provider-to-customer edge followed by a customer-to-
provider edge. The ToR problem is to assign direction to edges in E minimizing
the number of paths in P containing the invalid pattern.

The problem of identifying the directions of all edges in E making all paths
in P valid—assuming such edge orientation exists—can be reduced to the 2SAT
problem.? Initially, we arbitrarily direct all edges in E and introduce a boolean
variable x; for every edgei,i =1... |E| If the algorithms described below assign
the value true to x;, then edge i keeps its original direction, while assignment of
false to x; reverses the direction of i. We then split each path in P into pairs of
adjacent edges involving triplets of ASs (all 1-link paths are always valid) and
perform mapping between the obtained pairs and 2-variable clauses as shown
in Table 1. The mapping is such that only clauses corresponding to the invalid
path pattern yield the false value when both variables are true. If there exists

2 9SAT is a variation of the satisfiability problem: given a set of clauses with two
boolean variables per clause I; V [;, find an assignment of values to variables satisfy-
ing all the clauses. MAX2SAT is a related problem: find the assignment maximizing
the number of simultaneously satisfied clauses.

116 X. Dimitropoulos et al.

Table 1. Mapping between pairs of adjacent edges in P, 2SAT clauses, and edges
in Gasar. The invalid path pattern is in the last row

Edges in P 2SAT clause|Edges in Gasar
i j Xi %
Ot @t T VX _ _
X X,
j

[S z; VT

Ot——0O<——0 Ty VX

" 7 X. X.

l i J
.4_._‘]>. T VI _ :><:,
X. X

an assignment of values to all the variables such that all clauses are satisfied,
then this assignment makes all paths valid.

To solve the 2SAT problem, we construct a dual graph, the 2SAT graph
Gaosar(Vasar, Easar), according to the rules shown in Table 1: every edge i € F
in the original graph G gives birth to two vertices x; and Z; in Vogar, and every
pair of adjacent links {; V I; in P, where literal [; (I;) is either z; (x;) or Z; (Z;),
gives birth to two directed edges in Eoga7: from vertex I, to vertex l; and from
vertex l}- to vertex l;. As shown in [9], there exists an assignment satisfying all
the clauses if there is no edge 7 such that both of its corresponding vertices in
the 2SAT graph, z;,Z; € Vogar, belong to the same strongly connected compo-
nent3 (SCC) n GQSAT.

If an assignment satisfying all the clauses exists we can easily find it. We
perform topological sorting? ¢ on nodes in Vogar and assign true or false to a
variable z; depending on if ¢(Z;) < t(x;) or t(z;) < t(Z;) respectively. All opera-
tions described so far can be done in linear time.

2.3 MAX2SAT: DPP Versus EHS

As soon as a set of BGP paths P is “rich enough,” there is no assignment
satisfying all clauses and making all paths valid. Furthermore, the ToR, problem
of maximizing the number of valid paths can be reduced to the MAX2SAT [1, 2]

3 An SCC is a set of nodes in a directed graph s. t. there exists a directed path between
every ordered pair of nodes.

4 Given a directed graph G(V,E), function t:V — R is topological sorting if
t(i) < t(j) for every ordered pair of nodes 4, € V s. t. there exists a directed path
from i to j.

Inferring AS Relationships: Dead End or Lively Beginning? 117

problem of maximizing the number of satisfied clauses. Making this observation,
DPP propose a heuristic to find the maximal subset of paths Ps C P such that
all paths in Pg are valid.

EHS use a different approach. They first direct the edges i € E that can be di-
rected without causing conflicts. Such edges correspond to vertices x;, T; € Vogar
that have indegree or outdegree zero. Then EHS iteratively remove edges directed
as described above and strip P, G, and G35 a1 accordingly. This procedure signif-
icantly shortens the average path length in P, which improves the approximation
of ToR by MAX2SAT. Finally, they approximate MAX2SAT to find a solution
to the ToR problem.

2.4 Solving MAX2SAT with SDP

The MAX2SAT problem is NP- and APX-complete [10], but Goemans and
Williamson (GW) [11] construct a famous approximation algorithm that uses
semidefinite programming (SDP) and delivers an approximation ratio of 0.878.
The best approximation ratio currently known is 0.940, due to improvements
to GW by Lewin, Livnat, and Zwick (LLZ) in [12]. Note that this approximation
ratio is pretty close to the MAX2SAT inapproximability limit of 2 ~ 0.954 [13].

To cast a MAX2SAT problem with mgy clauses involving m; literals (vari-
ables z; and their negations Z;, i = 1...m;) to a semidefinite program, we first
get rid of negated variables by introducing m; variables x,,,1; = Z;. Then we
establish mapping between boolean variables x, k = 1...2my, and 2m; + 1 aux-
iliary variables yo,yx € {—1,1}, Ym,+i = —¥:, using formula z = (1 + yoyx)/2.
This mapping guarantees that xy = true < y, = yo and zx = false &y = —yo.
Given the described construction, we call yy the truth variable. After trivial al-
gebra, the MAX2SAT problem becomes the maximization problem for the sum
1/42%?;1 wi1 (3 4+ Yoyr + Your — yryi), where weights wy; are either 1 if clause
xk V x; is present in the original MAX2SAT instance or 0 otherwise. Hereafter
we fix the notations for indices 7,5 =1...m7 and k,l =1...2m;.

The final transformation to make the problem solvable by SDP is relaxation.
Relaxation involves mapping variables 1, ¥ to 2m1+1 unit vectors vy, v, ER™1 1
fixed at the same origin—all vector ends lie on the unit sphere S,,,. The problem
is to maximize the sum composed of vector scalar products:

2m1
1
max 1 Zwkl(S—O—vo-vk—b—vo-vl—vkml) (1)
k=1
s.t. Vo V) =V U =1, V- Upqgi = —1,

1{3:1...27’)11, 2:1m1

Interestingly, this problem, solvable by SDP, is equivalent to the following
minimum energy problem in physics. Vectors vg, v, point to the locations of par-
ticles po, pr freely moving on the sphere S,,, except that particles p; and py,, 44
are constrained to lie opposite on the sphere. For every MAX2SAT clause xj, V xy,
we introduce three constant forces of equal strength (see Fig. 1): one repulsive
force between particles p, and p;, and two attractive forces: between p, and pg,

118 X. Dimitropoulos et al.

- — — — repulsion
.+, attraction

Fig. 1. The semidefinite programming relaxation to the MAX2SAT problem. Point po
(corresponding to vector v from the text) is the truth point. It attracts both points py
and p; representing the boolean variables from the clause zj V x;. Points pi and p; repel
each other. The problem is to identify the locations of all points on the sphere that
minimize the potential energy of the system. Given an orientation by SDP, we cut the
system by a random hyperplane and assign value true to the variables corresponding
to points lying on the same side of the hyperplane as the truth po

and between p; and po—the truth particle py attracts all other particles py with
the forces proportional to the number of clauses containing xj. The goal is to
find the location of particles on the sphere minimizing the potential energy of
the system. If we built such a mission-specific computer in the lab, it would solve
this problem in constant time. SDP solves it in polynomial time.

To extract the solution for the MAX2SAT problem from the solution obtained
by SDP for the relaxed problem, we perform rounding. Rounding involves cut-
ting the sphere by a randomly oriented hyperplane containing the sphere center.
We assign value true (false) to variables xj corresponding to vectors vy ly-
ing on the same (opposite) side of the hyperplane as the truth vector vg. GW
prove that the solution to the MAX2SAT problem obtained this way delivers
the approximation ratio of 0.878 [11]. We can also rotate the vector output
obtained by SDP before rounding and skew the distribution of the hyperplane
orientation to slightly prefer the orientation perpendicular to vg. These two tech-
niques explored to their greatest depths by LLZ improve the approximation ratio
up to 0.9401 [12].

2.5 Analysis of the Unperturbed Solution

We now have the solution to the original ToR problem and are ready to an-
alyze it. While the number of invalid paths is small [2], the solution is not

Inferring AS Relationships: Dead End or Lively Beginning? 119

perfect—some inferred AS relationships are not in fact accurate. What causes
these misclassifications?

First, some edges may be directed either way resulting in exactly the same
number of invalid paths—such edges are directed randomly. To exemplify, con-
sider path p € P, p = {i1i2...9|p—1J}, 1,2, ...,%|p|—1,J € F, and suppose that
the last edge j appears only in one path (that is, p) and that it is from some
large provider (like UUNET) to a small customer. Suppose that other edges
i1,%2, - .., %|p|—1 appear in several other paths and that they are correctly inferred
as customer-to-provider. In this scenario both orientations of edge j (i.e. correct
and incorrect: provider-to-customer and customer-to-provider) render path p
valid. Thus, edge j is directed randomly, increasing the likelihood of an incor-
rect inference. We can find many incorrect inferences of this type in our experi-
ments in the next section and in [6], e.g. well-known large providers like UUNET,
AT&T, Sprintlink, Level3, are inferred as customers of smaller ASs like AS1 (AS
degree 67), AS2685 (2), AS8043 (1), AS13649 (7), respectively.

Second, not all edges are customer-to-provider or provider-to-customer. In
particular, trying to direct sibling edges leads to proliferation of error. Indeed,
when the only objective is to maximize the number of valid paths, directing
a sibling edge brings the risk of misdirecting the dependent edges sharing a
clause with the sibling edge. To clarify, consider path p € P, p = {ij}, i,j € E,
and suppose that in reality 7 is a sibling edge that appears in multiple paths
and that j is a customer-to-provider edge that appears only in one path p.
The algorithm can classify edge ¢ either as customer-to-provider or provider-
to-customer depending on the structure of the paths in which it appears. If
this structure results in directing ¢ as provider-to-customer, then the algorithm
erroneously directs edge j also as provider-to-customer to make path p valid. In
other words, the outcome is that we maximize the number of valid paths at the
cost of inferring edge j incorrectly.

We can conclude that the maximum number of valid paths does not corre-
spond to a correct answer because, as illustrated in the above two examples, it
can result in miss-inferred links. Specifically, in the presence of multiple solu-
tions there is nothing in the objective function to require the algorithm to prefer
the proper orientation for edge j. Our next key question is: Can we adjust the
objective function to infer the edge direction correctly?

2.6 Our New Generalized Objective Function

A rigorous way to pursue the above question is to add to the objective function
some small modifier selecting the correct edge direction for links unresolved by
the unperturbed objective function. Ideally this modifier should be a function
of “AS importance,” such as the relative size of the customer tree of an AS.
Unfortunately, defined this way the modifier is a function of the end result, edge
orientation, which makes the problem intractable (i.e. we cannot solve it until
we solve it).

The simplest correcting function that does not depend on the edge direction
and is still related to perceived “AS importance,” is the AS degree “gradient” in

120 X. Dimitropoulos et al.

the original undirected graph G—the difference between node degrees of adjacent
ASs. In the examples from the previous subsection, the algorithm that is trying
not only to minimize the number of invalid paths but also to direct edges from
adjacent nodes of lower degrees to nodes of higher degrees will effectively have
an incentive to correctly infer the last edge j € p.

More formally, we modify the objective function as follows. In the original
problem formulation, weights wy; for 2-link clauses zj V x; (pairs of adjacent
links in P) are either 0 or 1. We first alter them to be either 0, if pair {kl} ¢ P,
or wg;(a) = coa otherwise. The normalization coefficient c¢o is determined from
the condition }_; ,; wi(a) = & = co = 1/my (recall that ms is the number of
2-link clauses), and « is an external parameter, 0 < o < 1, whose meaning we
explain below.

In addition, for every edge i € E, we introduce a 1-link clause weighted by a
function of the node degree gradient. More specifically, we initially orient every
edge i € E along the node degree gradient: if d; and d;“, d; < d;r, are degrees of
nodes adjacent to edge i, we direct i from the d; -degree node to the d; -degree
node, for use as input to our algorithm.?

Then, we add 1-link clauses x; V z;, Vi € E, to our MAX2SAT instance, and
we weight them by w;; (o) = ¢1(1 — «) f(d; , d;"). The normalization coefficient ¢;
is determined from the condition), w;;(«r) = 1 — «, and the function f should
satisfy the following two conditions: 1) it should “roughly depend” on the rela-
tive node degree gradient (d — d;)/d;; and 2) it should provide higher values
for node pairs with the same relative degree gradient but higher absolute de-
gree values. The first condition is transparent: we expect that an AS with node
degree 5, for example, is more likely a customer of an AS with node degree 10
than a 995-degree AS is a customer of a 1000-degree AS. The second condition
is due to the fact that we do not know the true AS degrees: we approximate
them by degrees of nodes in our BGP-derived graph G. The graphs derived from
BGP data have a tendency to underestimate the node degree of small ASs, while
they yield more accurate degrees for larger ASs [14]. Because of the larger error
associated with small ASs, an AS with node degree 5, for example, is less likely
a customer of an AS with node degree 10 than a 500-degree AS is a customer of
a 1000-degree AS.

We select the following function satisfying the two criteria described above:

~ ey df —df o
fld;,d7) = mlog(di +d;). (2)

In summary, our new objective function looks exactly as the one in (1), but
with different weights on clauses:

5 An initial direction along the node degree gradient does not affect the solution since
any initial direction is possible. We select the node degree gradient direction to
simplify stripping of non-conflict edges in the next section.

Inferring AS Relationships: Dead End or Lively Beginning? 121

e it {kl} e P,
wiy(a) = cl(l—a)f(d;dZ) if k=10<mq, (3)
0 otherwise.

Now we can explain the role of the parameter a. Since 7, wi(a) =«
and), _, wii(a) = 1 — o, parameter o measures the relative importance of sums
of all 2- and 1-link clauses. If & = 1, then the problem is equivalent to the original
unperturbed ToR problem—only the number of invalid paths matters. If « = 0,
then, similar to Gao, only node degrees matter. Note that in the terminology of
multiobjective optimization, we consider the simplest scalar method of weighted
sums.

In our analogy with physics in Fig. 1, we have weakened the repulsive forces
among particles other than the truth particle pg, and we have strengthened the
forces between py and other particles. When o = 0, there are no repulsive forces,
the truth particle py attracts all other particles to itself, and all the vectors
become collinear with vy. Cut by any hyperplane, they all lie on the same side
as vg, which means that all variables x; are assigned value true and all links %
remain directed along the node degree gradient in the output of our algorithm.

3 Results

In our experiments, the BGP path set P is a union of BGP tables from Route-
Views [15] and 18 BGP route servers from [16] collected on May 13, 2004. Paths
of length 1 are removed since they are always valid. The total number of paths
is 1,025,775 containing 17,557 ASs, 37,021 links, and 382,917 unique pairs of
adjacent links.

We first pre-process the data by discovering sibling links. For this purpose,
we use a union of WHOIS databases from ARIN, RIPE, APNIC, and LACNIC
collected on June 10, 2004. We say that two ASs belong to the same organization
if, in the WHOIS database, they have exactly the same organization names, or
names different only in the last digits, e.g. “ATT-37" and “ATT-38,”or very
similar names, e.g. “UUNET South Africa” and “UUNET Germany.” We infer
links in P between adjacent ASs belonging to the same organization as sibling.
We find 211 sibling links in our dataset, which we ignore in subsequent steps.
More precisely, we do not assign boolean variables to them.

We then direct the remaining links in the original graph G along the node
degree gradient, assign boolean variables to them, and construct the dual Gogar
graph. After directing edge i along the node degree gradient, we check whether
this direction satisfies all clauses containing I; (x; or ;). If so, we then remove
the edge and strip P, G, and Gagar accordingly. In this case we say that edge @
causes no conflicts because the value of the corresponding literal I; satisfies all
the clauses in which I; appears, independent of the values of all other literals
sharing the clauses with [;. A non-conflict edge has two corresponding vertices
in the Gagar graph, x; and ;. It follows from the construction of the Gaogar
graph that z; has an outdegree of zero and Z; has an indegree of zero. We repeat

122 X. Dimitropoulos et al.

the described procedure until we cannot remove any more edges. The stripped
graph G has 1,590 vertices (9% of the original |V|) and 4,249 edges (11% of the
original |E’) The stripped Gagar graph has 8,498 vertices and 46,920 edges.
In summary, we have 4,249 (m;) 1-link clauses and 23,460 (mz) 2-link clauses.
We feed this data into a publicly available SDP solver DSDP v4.7 [17], reusing
parts of the code from [2] and utilizing the LEDA v4.5 software library [18]. We
incorporate the pre-rounding rotation and skewed distribution of hyperplane
orientation by LLZ [12].

Fig. 2 shows results of edge orientations we derive for different values of «
in (3). Specifically, the figure shows the percentage of valid paths, edges directed
as in the a = 0 case, and edges directed as in the a = 1 case. In the particular
extreme case of a = 1, the problem reduces to the original ToR problem consid-
ered by DPP and EHS, and its solution yields the highest percentage of valid
paths, 99.67%. By decreasing «, we increase preference to directing edges along
the node degree gradient, and at the other extreme of o = 0, all edges become
directed along the node gradient, but the number of valid paths is 92.95%.

Note that changing « from 0 to 0.1 redirects 1.64% of edges, which leads
to a significant 6.53% increase in the number of valid paths. We also observe
that the tweak of « from 1 to 0.9 redirects 2.56% of edges without causing any
significant decrease (only 0.008%) in the number of valid paths. We find that
most of these edges are directed randomly in the o = 1 case because oriented
either way they yield the same number of valid paths. In other words, the AS
relationships represented by these edges cannot be inferred by minimizing the
number of invalid paths.

We also rank ASs by means of our inference results with different o values.
To this end we split all ASs into hierarchical levels as follows. We first order all
ASs by their reachability—that is, the number of ASs that a given AS can reach
“for free” traversing only provider-to-customer edges. We then group ASs with
the same reachability into levels. ASs at the highest level can reach all other ASs
“for free.” ASs at the lowest level have the smallest reachability (fewest “free”
destinations). Then we define the position depth of AS X as the number of ASs

percentage

% of valid paths —+— -
% of edges directed as in the 0. = 0 case ---x---
) % oi‘ edges girecteq asin th‘e a=1 case ‘%

L L
[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o

Fig. 2. Percentage of valid paths, of edges directed as in the o = 0 case and of edges
directed as in the a = 1 case for different values of «

Inferring AS Relationships: Dead End or Lively Beginning? 123

Table 2. Hierarchical ranking of ASs. The position depth (the number of AS at the
levels above) and width (the number of ASs at the same level) of the top five ASs in
the @« = 0 and a = 1 cases are shown for different values of a. The customer leaf ASs
are marked with asterisks

a=0.0 a=0.2 a=05]|a=08|a=1.0

AS #[name [degree dep. wid. |dep. wid. |dep. wid.|dep. wid.|dep. wid.
701 UUNET 2373 | 0 1 0 173 1 232 1 252|117 476
1239 Sprint 1787 | 1 1 0 173 1 232 1 252| 17 476
7018 AT&T 1723 | 2 1 0 173 1 232 1 252 17 476
3356 Level 3 1085 | 3 1 0 173 1 232 1 252|117 476
209 Qwest 1072 | 4 1 0 173 1 232 1 25217 476
3643 | Sprint Austr. 17 | 194 1 222 1 250 1 268 1| 0 4
6721 |Nextra Czech Net| 3 [1742 941 |833 88 [868 90 (884 89| 0 4

11551| Pressroom Ser. 2 |1742 941 |1419 398 |1445 390 (1457 386| 0 4
1243 | Army Systems 2 |2683 14725%|2753 14655* 1445 390 1457 386| 0 4
6712 | France Transpac | 2 |2683 14725%|2753 14655%|292 3 | 1 252| 4 13

at the levels above the level of AS X. The position width of AS X is the number
of ASs at the same level as AS X.

Table 2 shows the results of our AS ranking. For different values of a, we track
the positions of the top five ASs in the & = 0 and « = 1 cases. In the former case,
well-known large ISPs are at the top, but the number of invalid paths is relatively
large, cf. Fig. 2. In the latter case delivering the solution to the unperturbed
ToR problem, ASs with small degrees occupy the top positions in the hierarchy.
These ASs appear in much lower positions when « # 1. Counter to reality, the
large ISPs are not even near the top of the hierarchy. We observe that the
depth® of these large ASs increases as a approaches 1, indicating an increasingly
stronger deviation from reality. The deviation is maximized when « = 1. This
observation pronounces the limitation of the ToR problem formulation based
solely on maximization of the number of valid paths.

4 Conclusion and Future Work

Using a standard multiobjective optimization method, we have constructed a
natural generalization of the known AS relationship inference heuristics. We
have extended the combinatorial optimization approach based on minimization
of invalid paths, by incorporating AS-degree-based information into the prob-
lem formulation. Utilizing this technique, we have obtained first results that
are more realistic than the inferences produced by the recent state-of-the-art

5 Note that the large ISPs are at the same depth as soon as a # 0, which is expected
since they form “almost a clique” [4] and are likely to belong to the same SCC. All
nodes in the same SCC have the same reachability. The converse is not necessarily
true.

124 X. Dimitropoulos et al.

heuristics [1,2]. We conclude that our approach opens a promising path toward
increasingly veracious inferences of business relationships between ASs.

The list of open issues that we plan to address in our future work includes:
1) modifications to the algorithm to infer peering; 2) careful analysis of the trade-
off surface [19] of the problem, required for selecting the value of the external
parameters (e.g. «) corresponding to the right answer; 3) detailed examination
of the structure of the AS graph directed by inferred AS relationships; 4) vali-
dation considered as a set of constraints narrowing the range of feasible values
of external parameters; and 5) investigation of other AS-ranking mechanisms
responsible for the structure of the inferred AS hierarchy.

Acknowledgements

We thank Thomas Erlebach, Alexander Hall and Thomas Schank for sharing
their code with us.

Support for this work was provided by the Cisco University Research Pro-
gram, by DARPA N66002-00-1-893, and by NSF ANI-0221172, ANI-9977544,
ANT-0136969 and CNS-0434996, with support from DHS/NCS.

References

1. Battista, G.D., Patrignani, M., Pizzonia, M.: Computing the types of the relation-
ships between Autonomous Systems. In: IEEE INFOCOM. (2003)

2. Erlebach, T., Hall, A., Schank, T.: Classifying customer-provider relationships in
the Internet. In: Proceedings of the IASTED International Conference on Com-
munications and Computer Networks (CCN). (2002)

3. Gao, L.: On inferring Autonomous System relationships in the Internet. In:
IEEE/ACM Transactions on Networking. (2001)

4. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.H.: Characterizing the Internet
hierarchy from multiple vantage points. In: IEEE INFOCOM. (2002)

5. Xia, J., Gao, L.: On the evaluation of AS relationship inferences. In: IEEE GLOBE-
COM. (2004)

6. Rimondini, M.: Statistics and comparisons about two solutions for comput-
ing the types of relationships between Autonomous Systems (2002) http://
www.dia.uniroma3.it/~compunet/files/ToR-solutions-comparison.pdf.

7. Siganos, G., Faloutsos, M.: Analyzing BGP policies: Methodology and tool. In:
IEEE INFOCOM. (2004)

8. Huber, B., Leinen, S., O’Dell, R., Wattenhofer, R.: Inferring AS relationships
beyond counting edges. Technical Report TR 446, ETH Ziirich (2004)

9. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear time algorithm for testing the truth
of certain quantified boolean formulae. Information Processing Letters 8 (1979)
121-123

10. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer Verlag, Berlin (1999)

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM 42 (1995) 1115-1145

12.

13.

14.

15.

16.

17.

18.

19.

Inferring AS Relationships: Dead End or Lively Beginning? 125

Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-
SAT and MAX DI-CUT problems. In: Proceedings of the 9" International IPCO
Conference on Integer Programming and Combinatorial Optimization. (2002)
Hastad, J.: Some optimal inapproximability results. In: Proceedings of the 29"
Annual ACM Symposium on Theory of Computing. (1997)

Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: Towards cap-
turing representative AS-level Internet topologies. Computer Networks Journal 44
(2004) 737-755

Meyer, D.: University of Oregon Route Views Project (2004)

: A traceroute server list. http://www.traceroute.org (2004)

Benson, S., Ye, Y., Zhang, X.: A dual-scaling algorithm for semidefinite program-
ming (2004) http://www-unix.mcs.anl.gov/~benson/dsdp/.

GmbH, A.S.S.: L E D A library (2004)
http://www.algorithmic-solutions.com/enleda.htm.

Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies.
Springer-Verlag, Berlin (2003)

Acceleration of Shortest Path and Constrained Shortest
Path Computation

Ekkehard Kohler, Rolf H. Méhring, and Heiko Schilling®

TU Berlin, Institut fiir Mathematik,
Str. des 17. Juni 136, 10623 Berlin, Germany.
{Ekkehard.Koehler, Rolf.Moehring, Heiko.Schilling}@TU-Berlin.DE

Abstract. We study acceleration methods for point-to-point shortest path and
constrained shortest path computations in directed graphs, in particular in road
and railroad networks. Our acceleration methods are allowed to use a prepro-
cessing of the network data to create auxiliary information which is then used to
speed-up shortest path queries. We focus on two methods based on Dijkstra’s al-
gorithm for shortest path computations and two methods based on a generalized
version of Dijkstra for constrained shortest paths. The methods are compared with
other acceleration techniques, most of them published only recently. We also look
at appropriate combinations of different methods to find further improvements.
For shortest path computations we investigate hierarchical multiway-separator
and arc-flag approaches. The hierarchical multiway-separator approach divides
the graph into regions along a multiway-separator and gathers information to
improve the search for shortest paths that stretch over several regions. A new
multiway-separator heuristic is presented which improves the hierarchical sepa-
rator approach. The arc-flag approach divides the graph into regions and gath-
ers information on whether an arc is on a shortest path into a given region. Both
methods yield significant speed-ups of the plain Dijkstra’s algorithm. The arc flag
method combined with an appropriate partition and a bi-directed search achieves
an average speed-up of up to 1,400 on large networks. This combination narrows
down the search space of Dijkstra’s algorithm to almost the size of the corre-
sponding shortest path for long distance shortest path queries. For the constrained
shortest path problem we show that goal-directed and bi-directed acceleration
methods can be used both individually and in combination. The goal-directed
search achieves the best speed-up factor of 110 for the constrained problem.

1 Introduction

In combinatorial optimization computing shortest paths is regarded as one of the most
fundamental problems. What makes the shortest paths problem so interesting is the im-
portant role it plays in numerous real world problems: combinatorial models of real
world scenarios often contain or reduce to shortest path computations. Much research
has been done on shortest path problems and there is a large variety of different algo-
rithms for computing shortest paths efficiently in a given network. In the present paper

* Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research Cluster
”Algorithms on Large and Complex Networks” (1126).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 126-138, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Acceleration of Shortest Path and Constrained Shortest Path Computation 127

we look at one of the most common variants of the problem where one has to find a
shortest path between two nodes in a directed graph, the point-to-point shortest path
problem (P2P). Motivated by real-world applications, we assume that the shortest path
problem has to be solved repeatedly for the same network . Thus, preprocessing of the
network data is possible and can support the computations that follow. The purpose of
this paper is to study implementations of different acceleration methods for shortest
path and constrained shortest path computations in traffic networks. In contrast to gen-
eral graphs, road networks are very sparse graphs. They usually have an embedding in
the plane and the considered arc lengths often resemble Euclidean distances.

For shortest path computations we compare several approaches, published only re-
cently, and focus on four approaches which we found appropriate for our purpose.
For shortest path computations we first investigate a hierarchical multiway-separator
method similar to Frederikson’s [5]. In a preprocessing phase we determine a small
node multiway-separator that divides the graph into regions of almost balanced size,
then information is gathered on the distances between the separator nodes of that partic-
ular region and is used in subsequent shortest path computations. Second, we consider
a generalization of a region-based arc labeling approach that we refer to as the arc flag
approach. The basic idea of the arc flag method using a simple rectangular partition has
been suggested by Lauther [12]. The arc-flag approach divides the graph into regions
and gathers information for each arc on whether this arc is on a shortest path into a
given region. For each arc this information is stored in a vector. More precisely, the
vector contains a flag for each region of the graph indicating whether this arc is on a
shortest path into that particular region. Thus, the size of each vector is determined by
the number of regions and the number of vectors is determined by the number of arcs.
Arc flags are used in the Dijkstra computation to avoid exploring unnecessary paths.

In addition to ordinary shortest path computations, we also study accelerating con-
strained shortest path computations. We look at networks where each arc is assigned
two values: a length and a cost. The aim is to compute a shortest path with respect
to the length such that the sum of the cost values of the corresponding arcs does not
exceed a given cost bound. This is a well-known weakly NP-hard problem. A stan-
dard algorithm for constrained shortest paths is a generalized Dijkstra algorithm [1]. In
the present paper we analyze the behavior of several acceleration methods for shortest
paths when applied to the generalized Dijkstra algorithm. In particular we investigate a
goal-directed search, a bi-directed search, and a combination of the two. The study is
motivated by a routing project in cooperation with DaimlerChrysler AG. In this project
we have to compute routes which guarantee a given fairness condition. This is where
the constrained shortest path problem comes in.

To compare the different approaches we look at computational results for a given
set of road and railroad networks. We first present the results for the main methods in
this paper. We also compare them with results for other methods and finally we take
into account combinations of our main methods with the other methods we discussed.
In our tests we only present combinations which seem to be appropriate and leave out
non-appropriate methods as, for example, pure goal-directed search in combination with
the arc-flag method, since the latter is already highly goal-directed by construction.

128 E. Kohler, R.H. Moéhring, and H. Schilling

Related work. There are various studies of acceleration methods for shortest path
computations. A recent overview is given in [6]. For hierarchical methods we refer
to [5, 18]. Gutman [8] introduces a method based on the concept of reach: for each
node a single reach value together with Euclidean coordinates is stored in order to en-
able a specific kind of goal-directed search. Gutman reports that he computes shortest
paths 10 times faster than the plain Dijkstra algorithm. Goldberg describes an approach
which uses the A* search in combination with a lower-bounding technique based on so-
called landmarks and the triangle inequality. Using just one landmark the results that
Goldberg’s algorithm produces are not as good as Gutman’s, but with 16 landmarks he
reports on a speed-up of up to 17. The basic arc-flag approach using a rectangular geo-
graphic partition of the underlying graph is described by Lauther [13], who observed a
speed-up of up to 64. Experimental studies for other geometric speed-up techniques can
be found in Holzer, Schulz, and Willhalm [9]. For a recent overview on the many tech-
niques for the constrained shortest path problem we refer to [4]. Recent experimental
results on it can be found in [14, 17].

Our contributions. For the hierarchical multiway-separator approach we extend Good-
rich’s algorithm to non-planar graphs. We introduce a new heuristic which for our data
computes a smaller multiway-separator than METIS [15]. The sizes of the multiway-
separator range between 67 % and 85 % of the sizes of the separators computed by
METIS. Because of the smaller multiway-separator size our heuristic improves the hi-
erarchical multiway-separator approach up to a speed-up factor of 14.

With the arc-flag method we investigate a new type of shortest path acceleration. It
uses a partition of the node set of the graph into regions and precomputes one bit (flag)
of information per arc and region. It consistently yields the best speed-up results on our
road networks. When combined with an arc separator partition we obtain a speed-up
factor of 220. A combination with a bi-directed search yields a speed-up factor of up to
1,400. It may seem promising to combine the arc flag method also with Gutman’s ac-
celeration method [8]. However, our experiments have shown that although this method
reduces the search space, it does not reduce the running time any further.

For the constrained shortest path problem we show that the goal-directed and the bi-
directed approach can be used both individually and in combination. Here, the simple
goal-directed search yields the greatest speed-up factors (110) and the bi-directed search
which does not need preprocessing still provides reasonable results (factor of 5). To our
knowledge this is the first time that these standard techniques have been applied to
constrained shortest path problems on road networks.

2 Preliminaries

The input to the P2P problem is a directed graph G = (V,A) with n := |V| nodes, m :=
|A| arcs, a source node s, a target node ¢ and a nonnegative arc length ¢(a), for each
arc a € A. Additionally, in the constrained shortest path case, there are nonnegative arc
costs c(a) for each arc a € A. The P2P problem is to find a length minimal path in a
graph G from s to ¢, i.e., the sum of the arc lengths of all arcs in the path should be
minimal. We will refer to the path as a shortest s,t—path in G and the sum of its arc
length is denoted by dist(t), the shortest path distance from s to t. In the constrained

Acceleration of Shortest Path and Constrained Shortest Path Computation 129

P2P problem the aim is to find a length minimal s,7—path for which the sum of the arc
costs of all arcs in the path does not exceed a given cost bound Cs .

Our acceleration methods are based on Dijkstra’s algorithm [3] which computes dis-
tance labels d (1) from s to all reachable nodes u € V until dist,(z) is determined. The al-
gorithm maintains a preliminary distance d,(v) for all nodes and a set S of nodes whose
final shortest path distance from s has already been determined, i.e., ds(v) = dists(v).
The algorithm starts with setting d(s) = 0 and inserts s into S. Then it repeatedly scans
nodes u ¢ S in nondecreasing order of their distance label d,(u). It inserts u into S and
updates labels of all adjacent nodes w with (u,w) € A. Each node u is scanned and in-
serted into S at most once. On insertion arc (u, v) is considered and then d;(w) is updated
by the sum ds(u) + £(u,w) if it is dominated by the sum, i.e., dy(u) + £(u,w) < dg(w).
Note, that it is not necessary for the algorithm to traverse the whole graph. The set
of arcs which are traversed during the run of the algorithm is the search space. With
our acceleration methods we restrict Dijkstra’s algorithm to a smaller search space that
still leads to the shortest path and thus results in a faster running time. Using auxiliary
precomputed information from our acceleration methods the algorithm is able to reject
arcs before the update test which cannot be on a shortest path.

In the bi-directed search a second Dijkstra run is started simultaneously from ¢ and
computes a distance dist;(u) from ¢ in the reverse graph, the graph with every arc re-
versed. The bi-directed search algorithm alternates between running the forward (com-
mon) and reverse search version of Dijkstra’s algorithm and stops with an appropriate
stopping criterion when the two searches meet. Note that any alternation strategy will
correctly determine a shortest path.

In the constrained case we use a generalized version of Dijkstra’s algorithm by
Aneja, Aggarwal, and Nair [1]. Here, instead of one distance label per node a whole set
of label pairs (d;(u),cs(u)) are used for each node u, each of them representing distance
dy(u) and cost ¢s(u) of a path from s to u. If a node w is adjacent to u, all of its label pairs
(dg(w),cs(w)) are removed if they are dominated by (ds(u) + £(u,w),cs(u) + c(u,w)),
ie., dy(u) +€(u,w) < ds(w) and cs(u) + c(u,w) < ¢s(w). Thus, the generalized version
of Dijkstra’s algorithm maintains a list of non-dominating label pairs at each node and
stops once the target is reached.

3 Shortest Path Acceleration Methods

In this section we consider two acceleration methods for shortest path computation.
Both methods have been used before for the case of planar embedded graphs. Here we
extend them to work on almost planar graphs such as road or railroad networks. Note
that in theory our extensions also work on arbitrary graphs.

The Multiway-Separator Approach. A significant acceleration can already be
achieved by a divide and conquer method in combination with an appropriate prepro-
cessing. In the multiway-separator approach, due to Frederickson [5], one computes a
small node set whose removal partitions the graph into regions of roughly equal size
such that there is no path between different regions.

Our heuristic to determine a balanced multiway-separator in road networks is based
on an approach by Goodrich [7]. Goodrich uses a multiway-separator that divides the

130 E. Kohler, R.H. Moéhring, and H. Schilling

graph in up to O(n®), 0 < € < %, regions. The construction of the multiway-separator
by Goodrich involves two steps. In the first step a breadth first search (BFS) tree from
some root node s is computed and O(n?) so-called starter-levels (0 < € < %) in the tree
are determined. For each of these starter-levels in the tree a cut-level above and below is
determined, such that each cut-level contains maximally 2 [/n] nodes and its distance
is at most v/n/2 levels away from the associated starter level. The nodes in the cut-level
are marked as separator nodes. The size of the regions is bounded by O(n'~¢). In the
second step Goodrich uses fundamental cycles to balance their size.

In our heuristic we make use of the first step of Goodrich’s algorithm since the sec-
ond step is not applicable to non-planar graphs. Instead, we apply again Goodrich’s
step 1 with a modified BFS-tree computation, together with a final cleaning step for
merging small connected components. In that way we reduce the number of separa-
tor nodes and obtain regions of roughly equal size. Altogether, our multiway-separator
heuristic consists of three steps: a BFS-tree computation for a coarse separation of the
graph, a second BFS-tree computation for a finer separation, and a cleanup step. The
size of the resulting multiway-separator and the regions depend essentially on the choice
of the different parameters in our multiway-separator heuristic.

After the multiway-separator has been constructed, every node which is not in the
multiway-separator is assigned to exactly one region. The separator nodes belong to
all regions separated by them and are defined as border nodes for that region. Then,
all shortest paths between separator nodes of the same region are precomputed and the
paths and their lengths are made available via lookup tables. This provides efficient
access during the subsequent path searches. For each determined shortest path between
border nodes of a particular region an additional arc is introduced with the shortest path
distance assigned to it as arc length. Border nodes together with the additionally inserted
arcs form a hierarchy layer on top of the original graph. If a shortest path search starts at
some node s lying in some region R, the Dijkstra algorithm begins with scanning nodes
in R;. However, when leaving region R;, the search algorithm walks only along arcs of
the hierarchy layer, until it reaches the target region. Then, for the rest of the search it
again walks along original arcs in the graph. If the determined shortest path stretches
over several regions it consists of original and additionally inserted arcs. But it can
be reconstructed with the path information stored in the lookup table. Our multiway-
separator heuristic together with the hierarchical acceleration method delivers a speed-
up factor of up to 14 compared to the plain Dijkstra’s algorithm (see Section 5 for
further results).

The Arc-Flag Approach. A significantly stronger speed-up can be achieved with the
arc-flag approach. This approach is based on a partition of the graph into node sets
Ry,..., Ry, which we call regions. Each node is assigned to exactly one region. At each
arc a we store a flag for each region R; (0 < i < k). This flag is set to TRUE if a is on a
shortest path to at least one node in R; or if a lies in R;, otherwise it is set to FALSE. For
each arc a this information is stored in a vector of flags f,,. Thus the size of f, is k, the
number of regions, whereas the number of vectors is the number of arcs (see Figure 1).
A shortest path search from a node s to a node ¢ in region R; can now be conducted
using a Dijkstra algorithm that only traverses arcs a where f, () is TRUE.

Acceleration of Shortest Path and Constrained Shortest Path Computation 131

t <
Fig. 1. In the arc-flag method at each arc Fig. 2. The search space of a Dijkstra compu-
a a vector f; of arc-flags is stored such tation with arc-flag acceleration. The search
that f,[i] indicates if @ is on a shortest started in s and the region containing the target
path into region i node ¢ is highlighted

The basic idea of this approach using a simple rectangular partition has been re-
ported by Lauther [12]. His partition requires an embedding of the graph in the plane.
When combined with a bi-directed search Lauther [13] obtains a speed-up factor of 64
on the European truck driver’s road map (326,159 nodes, 513,567 arcs, 300 requests,
139 regions). With an improved partition of the graph we obtain a speed-up factor of
677 on an instance of roughly the same size (362,554 nodes, 920,464 arcs, 2,500 re-
quests, 100 regions). Here we use fewer regions than Lauther and also apply bi-directed
search. The speed-up of this method increases with larger instances up to a factor of
1,400.

The preprocessing for this approach can be done as follows. Note that all shortest
paths entering a region R; have to use some arc a that crosses the border of R;. Now
for each of those crossing arcs a shortest path tree in the reverse graph is computed
starting at arc a. All arcs in this a-rooted reverse shortest path tree obtain the value
TRUE in their flag-vector at position i. Doing this for all arcs entering R; one can fill up
all entries at the i-th component of the flag-vector of all arcs in G. Note, that it is not
possible to reduce the problem to one shortest path tree computation per region, since
then it may be possible that we miss necessary flags. The set of arcs crossing the border
of some region R form an arc cut 6. The total preprocessing time for that region then
amounts to O(|6g|nlogn). This can be reduced further since information on a computed
shortest path tree of a border crossing arc a can be used for subsequent shortest path tree
computations of that region. An additional reduction of the preprocessing time can be
achieved by improving the partition, e.g., by computing small multi-way arc separator.
Using METIS [15] for this task we can reduce the preprocessing time by a factor of
2 compared to the rectangular partitioning, while using the same number of regions.
Here the shortest path query time decreases by a factor of up to 4. The reason for this
additional speedup is the fact that the arc separator determined by METIS much better
represents the specific structure of the graph.

132 E. Kohler, R.H. Moéhring, and H. Schilling

4 Constrained Shortest Path Acceleration Methods

In addition to accelerating shortest path queries we have also investigated the effect of
standard acceleration methods for the resource constrained shortest path problem.

The Goal-Directed Approach. Our goal-directed approach attempts to accelerate
the path search by employing a lower bound on the (remaining) path lengths and costs
to the target node. This is achieved by modifying the arc lengths and costs and thereby
forcing Dijkstra’s algorithm to prefer nodes closer to the target node over those fur-
ther away. In road and railroad networks usually Euclidean distances are used as lower
bounds. However, in the case of constrained shortest paths one can exploit the fact that
computing the shortest path from the target node to all other nodes is cheap compared
to the overall cost of the extended Dijkstra. Hence, by simply computing both a reverse
shortest path tree from the target node with respect to length and a reverse shortest path
tree with respect to cost, it is possible to determine very good lower bounds on the re-
maining path lengths. One can use these trees for directing the constrained shortest path
search. Note that here it is not necessary to restrict the method to Euclidean distances.
Thus our goal-directed technique for constrained shortest paths is not limited to graphs
that are embedded in the plane. Compared to other acceleration methods, this procedure
consistently has delivered the best results in our tests (up to speed-up factors of 110).
More details on this acceleration method can be found in [11].

The Bi-Directed Approach. In the bi-directed approach the constrained shortest
paths are computed simultaneously from the start and the target node. In a traditional
bi-directed search there is a simple stopping criterion to stop the search when the two
frontiers meet. However, in the resource constrained case the stopping criterion is more
complex. We use the usual stopping criterion for the ordinary shortest path problem
as a starting point for a generalization to constrained shortest paths. Our generalized
stopping criterion requires the labeling Dijkstra to explore labels in a lexicographic or-
der (length before cost). For more details, please refer to the extended version of this
paper [11].

S Implementation and Experiments

Implementation. The methods presented in this paper were implemented in C++ using
the GNU g++ compiler version 3.4.2 with the optimizing option ”-O3” on Linux 2.4/2.6
systems (SuSE 9.1). All computations were done on 64 bit machines: Intel Itanium II
machines 1.2 GHz with 64 GB shared memory and 500 KB cache memory and AMD
Opteron machines 2.2 GHz with 8 GB memory and 1 MB cache memory. For this work
we had to efficiently plug together and test several different versions of (constrained)
shortest path algorithms. For developing such a framework we used generic program-
ming techniques via template meta-programming in C++ as described, e.g., in [2].
Instances. All computations were done on real world networks described in Table 1.
Each arc in these networks has a nonnegative integer geographic length. The arc costs
are nonnegative rational numbers and arise from a routing project; see [10] for more de-
tails. For each network instance we randomly generated up to 2,500 route requests. The
measured speed-up factors and running times are averaged over all computed requests.

Acceleration of Shortest Path and Constrained Shortest Path Computation 133

Table 1. Input networks used in the paper. Dijkstra running time is the shortest path query time
computed by a plain Dijkstra’s algorithm for a single request. The values are averaged over 2,500
requests which were computed on an Opteron processor (2.2 GHz)

name description # nodes # arcs Dijkstra
running time [sec]

B Berlin 12,100 19,570 0.1
GR German Railway 14,938 32,520 0.2
GH German Highway 53,315 109,540 1.0
AA North Rhine-Westphalia south 362,554 920,464 53
TH Thuringia 422917 1,030,148 6.1
oS Berlin, Brandenburg, 474,431 1,169,224 7.0
Saxony, Saxony-Anhalt, Mecklenburg
NW North Rhine-Westphalia north 560,865 1,410,076 9.9
NO Lower Saxony, Schleswig-Holstein, 655,192 1,611,148 11.6
Hamburg, Bremen
HS Hesse, Saarland, Rhineland-Palatinate 675,465 1,696,054 11.7
BY Bavaria 1,045,567 2,533,612 17.2

Shortest Path Computations. Dijkstra’s standard algorithm was compared with the
following acceleration methods: node multiway-separator heuristic (sep-heu), arc-flag
approach together with a rectangular partition (af-rect) and an arc multiway-separator
partition (af-sep), which were computed with METIS [15]. Combining the bi-directed
search and the arc-flag method with an arc multiway-separator partition by METIS was
the most successful method in our tests with a speed-up of up to 1,400 (af-sep-bi).

In all computations we measured the preprocessing time, the average over all short-
est path requests of the shortest path query time, of the length (number of arcs) of
the computed shortest path, and the size of the shortest path search space (number
of arcs). For the arc-flag method we also measured these parameters separately for
the 10% shortest and the 10% longest requests with respect to their shortest path
distance.

Constrained Shortest Path Computations. In our networks the path length corre-
sponds to travel times and the cost bound to a geographic length bound on the paths.
This is motivated by route guidance systems, where the cost corresponds to a given
fairness condition. More precisely, the cost bound is determined by a factor times the
geographic path length of an s,7—path with minimum length. In our experiments we
tested factors of 1.05, 1.1 and 1.2. Computational results for constrained shortest path
acceleration methods are displayed in Table 4.

6 Discussion and Conclusion

Shortest Path Acceleration Methods. The Multiway-Separator Approach achieved a
speed-up factor of up to 14, see Figure 3. Our multiway-separator heuristic was able to
find a smaller multiway-separator on our road network instances than METIS (between
67 % and 85 % of the multiway-separator sizes computed by METIS). The heuris-
tic was also able to improve upon the hierarchical separator methods by Frederick-
son [5]. But the hierarchical separator method together with our separator heuristic is
not among the best acceleration techniques studied here. For our multiway-separator

134 E. Kohler, R.H. Moéhring, and H. Schilling

1600

sep-heu m—
1400 af-rect 225 regions |
1200 af-sep 225 regions mmm—

af-sep-bidi 225 regions mmm— |

1000
800
600
400
200

AA BY HS NO NW OS TH GH GR

Fig. 3. Speed-up factors on all networks compared to the plain Dijkstra algorithm (factor of
1). Results are shown for the node multiway-separator heuristic (sep-heu), the arc-flag with a
rectangular partition (af-rect, 225 regions), the arc-flag with an arc multiway-separator partition
(af-sep, 225 regions), and the arc-flag with an arc multiway-separator partition combined with
bi-directed search (af-sep-bidi, 225 regions)

heuristic typical separator sizes are 1.67% (AA) and 1.34% (OS) of the graph nodes
and the resulting regions are of balanced size. The preprocessing time of the hierarchi-
cal multiway-separator technique is comparably small, 32 min (AA) and 28 min (OS).
The reason for the performance of the hierarchical approach is the number of artifi-
cially inserted arcs, which is 18.6% (AA) and 12.6% (OS) of the number of original
graph arcs. This is not in line with the aim to reduce the search space in the shortest
path computation. Another problem is the huge memory consumption of this method,
which is higher than for all other methods we discussed: e.g., 4.5 GB on our largest
instance BY. We also studied combinations of the hierarchical multiway-separator ap-
proach with both the goal-directed and the bi-directed search, but they only led to small
improvements.

Table 2. Number of arcs of computed shortest path vs. search space on network OS (474,431
nodes, 1,169,224 arcs). The reduction of the search space is the fraction of the size of the search
space vs. the number of arcs in the corresponding shortest path, averaged over all requests.
[requests| is the number of computed requests, req.length is the relative length of the request,
av. |s.path| is the average number of arcs of the determined shortest paths. Results are shown
for the arc-flag method with a rectangular partition (af-rect) and a multiway-separator partition
(af-sep) as well as a combination of these two with bi-directed search (af-rect+bidi, af-sep+bidi).
All partitions consist of 225 regions. It is remarkable that the arc-flag method combined with a
bi-directed search narrows the search space down to almost the size of the shortest path

network |requests| req.length av. |s.path| plain Dijkstra af-rect af-sep af-rect+bidi af-sep+bidi
(0N 250 long 791 x 1,313.3 x 11.0 x 6.9 x 1.3 x 1.2
250 short 136 x 571.7 x 740 x26.0 x 19.7 x 5.4

2,500 all 437 x 1,342.8 x 230 x11.0 x 2.4 x 1.8

Acceleration of Shortest Path and Constrained Shortest Path Computation 135

Table 3. Speed-up factors of the arc-flag method with an arc multiway-separator partition with
different numbers of regions and combined with a bi-directed search. Speed-up factors are com-
pared to the plain Dijkstra algorithm (factor of 1). Averaged values for 2,500 requests

network # nodes #arcs plain Dij. 25 regions 100 regions 225 regions 400 regions 625 regions
GR 14,938 32,520 x 1 x 8.56 x 18.4 x 32.6 x 38.39 x 43.7
GH 53,315 109,540 x 1 x 11.7 x 23.2 x 28.7 x 31.7 x 33.4
AA 362,554 920,464 x 1 % 260.6 x 677.6 x 1,020.5 x 1,136.9 x 148.9
0os 474,431 1,169,224 x 1 x 190.2 x 489.6 x 598.3 x 722.7 x 671.7

For the arc-flag method there is a clear trade-off between speed-up factor and mem-
ory usage. Depending on the chosen partition, one can regard the arc-flag acceleration
of shortest path computation as an interpolation between no precomputed information
at all (plain Dijkstra) and complete precomputation by determining all possible shortest
paths of the graph. Whereas the former is achieved by choosing a partition of the graph
into just one region, the latter means partitioning the graph in such a way that a region is
given for every single node of the graph. Thus in theory we can get as close as possible
to the ideal shortest path search by increasing the number of regions in the partition
(’ideal’ means that the shortest path algorithm visits only arcs which actually belong
to the shortest path itself). Obviously, an increase in the number of regions also entails
an increase in preprocessing time and memory consumption (e.g., 625 regions for AA:
5.3 h preprocessing time; 1.6 GB memory).

Using a combination of this method together with other techniques, the best result
that we achieved was on the largest instance (BY). The arc flag together with an arc
separator partition and combined with a bi-directed search delivers a speed-up factor of
1,400 compared to the plain Dijkstra. In this case we used a partition into 225 regions.
Thus we need an extra space of 450 bits (= 56 byte) per arc. With just 6 bytes of
information per arc (25 regions) the arc-flag method together with a bi-directed search
consistently delivered speed-up factors of up to 260 (instance AA, Table 3). This was
also the best result for memory consumption vs. speed-up factor. Moreover, Table 3
shows that this method is suitable in particular for larger instances (OS, AA) and long
distance requests. For long requests on OS we narrowed the search space down to a
factor of 1.2 times the number of shortest path arcs (corresponding to a speed-up factor
of 844), while we consistently achieved a factor of around 1.7 for a partition with 225
regions (corresponding to a speed-up factor of 598).

Another important point is the relatively small preprocessing time for our big in-
stances when compared to other preprocessing methods. For example, using the sepa-
rator partition with 100 regions took us about 2.5 hours (OS) or 2.9 hours (AA). This is
about half of what was spent on the rectangular partition. Still, the overall preprocess-
ing time can be reduced even further by using information on shortest path trees which
have been computed already for a region during the preprocessing phase.

Although we used this method on road networks with a given embedding in the
plane, the question of whether one really needs such an embedding of the graph de-
pends on the partition method that is used. Obviously, for the rectangular partition it is
needed, but for an arc multiway-separator partition it is not. The choice of the underly-
ing partition is crucial for the speed-up of this method. Using an arc multiway-separator

136 E. Kohler, R.H. Moéhring, and H. Schilling

partition instead of the rectangular partition results in an additional speed-up factor of 4.
The reason for this is the fact that the arc multiway-separator partition determined by
the help of METIS adapts much better to the specific structure of the network.

As for combinations of acceleration methods, the bi-directed search seems to be a
perfect match for the arc-flags (additional speed-up factors of up to 7). The goal-directed
search is less useful for the arc-flag method, since the method is already goal-directed by
construction. Typically, the arc-flag method creates a cone-like spreading of the search
space as it approaches the target region. In fact, at the beginning of a shortest path search
the algorithm is forced by the arc-flags to walk along shortest path arcs only. Just before
the target region is reached we can observe the spreading that was described above (see
Figure 2). To cope with this behavior of the arc-flag method and in order to improve the
algorithms even further, we suggest to study 2-level partitions; a coarse partition for far
away target nodes and a finer one for nearby nodes. An extensive investigation of the
speedup that can be obtained along these lines is presented in [16].

Constrained Shortest Path Acceleration Methods. In Section 4 we explained how
to adapt well-known acceleration techniques for shortest path computations to the con-
strained shortest path search. Here the goal-directed search yields the best results, but
the bi-directed search still delivers good accelerations. The advantage of the bi-directed
search is that it does not require any additional preprocessing. The combined version
(goal- and bi-directed) suffers from the lack of a good stopping criterion. See Table 4
for computational results of these methods.

The preprocessing phase of our methods is comparably short: on the Berlin road
network for the goal-directed search the preprocessing takes up to 161 seconds and
for the combined version up to 339 seconds. In the combined case the preprocessing
requires two shortest path tree computations to compute the lower bounds from the
target node to all other nodes in the graph. On hard instances where a large number

Table 4. Constrained shortest path acceleration methods on the Berlin road network
(12,100 nodes, 19,570 arcs). Results are shown for the plain generalized Dijkstra (plain), the
goal-directed search (go), the bi-directed search (bi), and the combination (go-bi). c. fact. is the

constrained factor, av. |s.path| is the average length of the determined shortest paths, |search

space| is the size of the search space (number of arcs), max. |label list| is the maximum size
of a node label list during a computation, prepro. time is the preprocessing time in seconds,
comp. time is the computation time in seconds, and speed-up fact. is the speed-up factor com-
pared to the plain generalized Dijkstra algorithm (factor of 1). Computed values are on average
for 1,000 requests, on a Itanium II processor (1.2 GHz)

method . fact. av. [s.path| [search space| max. [label list| prepro. time [s] comp. time [s] speed-up fact.

plain 1.2 68 80,803 23 0 1,212 x1
g0 1.2 68 1,484 24 161 13 x93
bi 1.2 68 16,045 20 0 231 x5
go-bi 1.2 68 18,401 39 339 197 x6
plain 1.05 76 95,241 23 0 1,534 x1
g0 1.05 76 1,847 26 154 14 x 110
bi 1.05 76 29,447 25 0 496 x3

go-bi 1.05 76 4,793 26 323 37 x42

Acceleration of Shortest Path and Constrained Shortest Path Computation 137

of labels is created during the search process, the preprocessing time can be neglected
compared to the overall processing time of a non-accelerated generalized Dijkstra run.
A further advantage of the goal-directed search is the possibility to have more than
one Pareto-optimal path computed within one run. This is of particular importance for
applications such as the routing project mentioned before.

Acknowledgment

We would like to thank Benjamin Wardemann and Ronald Wotzlaw for their help with
the implementation and the group of Dorothea Wagner at the University of Karlsruhe
for providing access to Opteron machines.

References

10.

11.

12.

13.

14.

Aneja, Y.P., Aggarwal, V., Nair, K.P.K.: Shortest chain subject to side constraints. Networks
13 (1983) 295-302

Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co. (2000)

. Dijkstra, E-W.: A note on two problems in connexion with graphs. Numer. Mathematik

(1955) 269-271

Dumitrescu, I.: Constrained path and cycle problems. PhD thesis, The University of Mel-
bourne (2002)

Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput. 16 (1987) 1004-1022

Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory.
In: Proc. of the 16th Annual ACM-SIAM Symp. on Discrete Algorithms. (2005) 156-165
Goodrich, M.T.: Planar Separators and Parallel Polygon Triangulation. Journal of Computer
and System Sciences 51 (1995) 374-389

Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for
road networks. In: Proc. of the 6th ALENEX. (2004) 100-111

Holzer, M., Schulz, E., Willhalm, T.: Combining speed-up techniques for shortest-path com-
putations. In Ribeiro, C.C., Martins, S.L., eds.: Experimental and Efficient Algorithms: 3rd
International Workshop, (WEA 2004). Volume 3059 of LNCS., Springer (2004) 269-284
Jahn, O., Mohring, R.H., Schulz, A.S., Moses, N.E.S.: System optimal routing of traffic
flows with user constraints in networks with congestion. Oper. Res. (2005) to appear.
Kohler, E., Mohring, R.H., Schilling, H.: Acceleration of shortest path and constrained
shortest path computation. Technical Report Report-042-2004, TU Berlin (2004)

Lauther, U.: Slow preprocessing of graphs for extremely fast shortest path calculations
(1997) Lecture at the Workshop on Computational Integer Programming at ZIB.

Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In Raubal, M., Sliwinski, A., Kuhn, W., eds.: Geoinformation
und Mobilitédt. Volume 22 of IfGI prints., Institut fiir Geoinformatik, Miinster (2004) 22-32
Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Proc. 8th European
Symposium on Algorithms. LNCS 1879, Springer (2000) 326-337

. METIS: A family of multilevel partitioning algorithms (2003) http://www- users.cs.umn.

edu/~karypis/metis.

138 E. Kohler, R.H. Moéhring, and H. Schilling

16. Mohring, R.H., Schilling, H., Schiitz, B., Wagner, D., Willhalm, T.: Partitioning graphs to
speed up Dijkstra’s algorithm. In: 4th International Workshop on Efficient and Experimental
Algorithms. LNCS, Springer (2005) this volume.

17. Miiller-Hannemann, M., Schnee, M.: Finding all attractive train connections by multi-criteria
pareto search. In: 4th Workshop on Algorithmic Methods and Models for Optimization of
Railways. (2004) to appear.

18. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in
railway systems. In: Proc. of the 4th ALENEX 2002. LNCS 2409, Springer (2002) 43-59

A General Buffer Scheme for the Windows
Scheduling Problem

Amotz Bar-Noy!, Jacob Christensen?, Richard E. Ladner?,
and Tami Tamir®

1 Computer and Information Science Department,
Brooklyn College, 2900 Bedford Avenue Brooklyn, NY 11210
amotz@sci.brooklyn.cuny.edu
2 Department of Computer Science and Engineering,
Box 352350,University of Washington,Seattle, WA 98195
{jacoblc, ladner}@cs.washington.edu
3 School of Computer Science,

The Interdisciplinary Center, Herzliya, Israel
tami@idc.ac.il

Abstract. Broadcasting is an efficient alternative to unicast for deliver-
ing popular on-demand media requests. Windows scheduling algorithms
provide a way to satisfy all requests with both low bandwidth and low
latency. Consider a system of n pages that need to be scheduled (trans-
mitted) on identical channels an infinite number of times. Time is slotted,
and it takes one time slot to transmit each page. In the windows schedul-
ing problem (WS) each page i, 1 < ¢ < n, is associated with a request
window w;. In a feasible schedule for WS, page ¢ must be scheduled at
least once in any window of w; time slots. The objective function is to
minimize the number of channels required to schedule all the pages. The
main contribution of this paper is the design of a general buffer scheme
for the windows scheduling problem such that any algorithm for WS fol-
lows this scheme. As a result, this scheme can serve as a tool to analyze
and/or exhaust all possible WS-algorithms. The buffer scheme is based
on modelling the system as a nondeterministic finite state channel in
which any directed cycle corresponds to a legal schedule and vice-versa.
Since WS is NP-hard, we present some heuristics and pruning-rules for
cycle detection that ensure reasonable cycle-search time.

By introducing various rules, the buffer scheme can be transformed
into deterministic scheduling algorithms. We show that a simple page-
selection rule for the buffer scheme provides an optimal schedule to WS
for the case where all the w;’s have divisible sizes, and other good sched-
ules for some other general cases. By using an exhaustive-search, we
prove impossibility results for other important instances.

We also show how to extend the buffer scheme to more generalized
environments in which (i) pages are arriving and departing on-line, (77)
the window constraint has some jitter, and (¢i7) different pages might
have different lengths.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 139-151, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

140 A. Bar-Noy et al.

1 Introduction

Currently, popular on-demand data on the Internet is provided in a unicast way,
by requesting it from a server. Such systems are called pull systems. A very high
demand over a short period of time may put stress on both server and network
bandwidth. This stress can be alleviated by replicating data in mirrors or caches.
An alternative approach to on-demand for popular data is a push system where
the data is provided by periodic broadcast or multicast. Those desiring and
authorized to receive the data simply wait, hopefully a short period of time, for
the broadcast. Pushing has the advantage over pulling in that it requires less
server and network bandwidth, as long as the demand is high. This approach to
providing popular data has led to a very interesting problem. What are the best
ways to partition the channel in a time multiplexed way to provide the service
in a push system? This general question can be modelled mathematically in a
number of ways. We choose a specific approach called windows scheduling (WS)
[5,6]. In this paper, we propose a new algorithmic technique called the buffer
scheme that can be used to design algorithms to solve WS problems and several
extensions of WS that cannot be solved using known algorithms. In addition,
the buffer scheme can be used to prove new impossibility results.

An instance to WS is a sequence W = (wz,...,w,) of n request windows,
and a set of h identical channels. The window request w; is associated with
a page ¢. Time is slotted, and it takes one time slot to transmit any page on
any channel. The output is a feasible schedule (a schedule in short) in which
for all 4, the page i must be scheduled (transmitted) on one of the h channels
at least once in any window of w; consecutive time slots. Equivalently, the re-
quirement is that the gap between any two consecutive appearances of i in the
schedule is at most w;. We say that a schedule is perfect if the gap between
any two consecutive appearances of ¢ in the schedule is a constant w] for some
w; < w;.

The optimization problem associated with WS is to minimize the number
of channels required to schedule all n pages. Define 1/w; as the width of page
i and let ho(W) = [>_,; 1/w;]. Then ho(W) is an obvious lower bound on the
minimum number of channels required for W.

Example I: An interesting example is that of harmonic scheduling, that is,
scheduling sequences H,, = (1,2,...n) in a minimum number of channels. Har-
monic windows scheduling is the basis of many popular media delivery schemes
(e.g., [21,15,16,18]). The following is a non-perfect schedule of 9 pages on 3
channels for the window sequence Hg = (1,2,...,9).

141111161111
212524252425
367389317398

Note that a page may be scheduled on different channels (e.g., 1 is scheduled on
all three channels). Also, the gaps between any two consecutive appearances of 4
need not be exactly w; or another fized number (e.g., the actual window granted

A General Buffer Scheme for the Windows Scheduling Problem 141

to 5 is 4 and the actual windows of 8 and 9 are sometimes 5 and sometimes 7).
Even though this schedule is not “nicely” structured, it is feasible since it obeys
the requirement that the maximal gap between any two appearances of i is at
most w; for any i. Using our buffer scheme in exhaustive search mode, we show
that there is no schedule for Hip = (1,2,...,10) on three channels even though

S0 1/i <3

Ezample II: In this paper we demonstrate that for some instances such “flexible”
schedules achieve better performance. Indeed, for the above example, there exists
a perfect feasible schedule on three channels. However for the following instance
this is not the case. Let n = 5 and W = (3,5,8,8,8). We show in this paper
that there is no feasible perfect schedule of these 5 pages on a single channel.
However,

[3,5,84,3,8,5,3,8¢,84,3,5,8p,3,8¢,5,3,84,8,3,5, 8, . .]

is a feasible non-perfect schedule on a single channel. This schedule was found
by efficiently implementing the buffer scheme. Most previous techniques only
produce perfect schedules.

1.1 Contributions

The main contribution of this paper is the design of a general buffer scheme for
the windows scheduling problem. We show that any algorithm for WS follows
this scheme. Thus, this scheme can serve as a tool to analyze all WS-algorithms.
The buffer scheme is based on presenting the system as a nondeterministic finite
state machine in which any directed cycle corresponds to a legal schedule and
vice-versa. The state space is very large, therefore we present some heuristics
and pruning-rules to ensure reasonable cycle-search time.

By introducing various rules for the buffer scheme, it can be transformed
into deterministic scheduling algorithms. We show that a simple greedy rule
for the buffer scheme provides an optimal schedule to WS for the case where
all the w;’s have divisible sizes. Our theoretical results are accompanied by ex-
periments. We implemented the deterministic buffer scheme with various page
selection rules. The experiments show that for many instances the determin-
istic schemes perform better than the known greedy WS algorithm
presented in [5].

By using an exhaustive-search, we prove impossibility results and find the
best possible schedules. As mentioned earlier, we prove that there is no schedule
of Hip = (1,2,...,10) on three channels. In addition, we find the best possible
schedules for other important instances. Similar to branch and bound, the search
is done efficiently thanks to heavy pruning of early detected dead-ends. The
results achieved in the exhaustive-search experiments appear not to be achievable
in any other way.

The main advantage of the buffer scheme is its ability to produce non-perfect
schedules. Most of the known algorithms (with or without guaranteed perfor-
mance) produce perfect schedules. However, in the WS problem and its ap-
plications such a restriction is not required. We demonstrate that the Earliest

142 A. Bar-Noy et al.

Deadline First (EDF) strategy is not the best for WS even though it optimal
for similar problems. We develop some understanding that leads us to the de-
sign of the Largest Backward Move (LBM) strategy that performs well in our
simulations.

The basic windows scheduling problem can be generalized in several ways that
cannot be handled by previous techniques that only produce perfect schedules.
(i) Dynamic (on-line) environment: pages are arriving and departing on-line
and the set of windows is not known in advance. Here the scheme is extended
naturally emphasizing its advantage as a framework to algorithms as opposed to
other greedy heuristics for the off-line setting that cannot be generalized with
such an ease. (ii) Jitter windows: each page is given by a pair of windows (w;, w;)
meaning that page ¢ needs to be scheduled at least once in any window of w; time
slots and at most once in any window of w; time slots. In the original definition,
w; = 1. Here again the generalization is natural. (iii) Different lengths: pages
might have different lengths. The buffer scheme can be generalized to produce
high quality schedules in these generalizations.

1.2 Prior Results and Related Work

The windows scheduling problem belongs to the class of periodic scheduling prob-
lems in which each page needs to be scheduled an infinite number of times. How-
ever, the optimization goal in of the windows scheduling problem is of the “max”
type whereas traditional optimization goals belong to the “average” type. That
is, traditional objectives insist that each page ¢ would receive its required share
(1/w;) even if some of the gaps could be larger than w;. The issue is usually
to optimize some fairness requirements that do not allow the gaps to be too
different than w;. Two examples are periodic scheduling [17] and the chairman
assignment problem [20]. For both problems the Earliest Deadline First strategy
was proven to be optimal. Our paper demonstrates that this is not the case for
the windows scheduling problem.

The pinwheel problem is the windows scheduling problem with one channel.
The problem was defined in [13,14] for unit-length pages and was generalized
to arbitrary length pages in [8,12]. In these papers and other papers about the
pinwheel problem the focus was to understand which inputs can be scheduled on
one channel. In particular, the papers [10, 11] optimized the bound on the value
of > | (1/w;) that guarantees a feasible schedule.

The windows scheduling problem was defined in [5], where it is shown how
to construct perfect schedules that use ho(W) + O(log ho(W)) channels. This
asymptotic result is complemented with a practical greedy algorithm, but no
approximation bound has been proved for it yet. Both the asymptotic and greedy
algorithms produce only perfect schedules.

The general WS problem can be thought of as a scheduling problem for push
broadcast systems (e.g, Broadcast Disks ([1]) or TeleText services ([2])) In such
a system there are clients and servers. The server chooses what information
to push in order to optimize the quality of service for the clients (mainly the
response time). In a more generalized model the servers are not the information

A General Buffer Scheme for the Windows Scheduling Problem 143

providers. They sell their service to various providers who supply content and
request that the content be broadcast regularly. The regularity can be defined
by a window size. Finally, various maintenance problems where considered with
similar environments and optimization goals (e.g., [22, 3]).

WS is known to be NP-hard. In a way, this justifies the efforts of this paper.
A proof for the case where ¢ must be granted an exact w; window is given in [4].
Another proof which is suitable also for the flexible case in which the schedule
of i need not be perfect is given in [7].

2 The General Buffer Scheme

In this section, we describe the buffer scheme and prove that for any instance
of windows scheduling, any schedule can be generated by the buffer scheme.
We then discuss how the buffer scheme can be simulated efficiently by early
detection and pruning of dead-end states. Using these pruning rules, we establish
an efficient implementation of the scheme that can exhaust all possible solutions.
For big instances, for which exhaustive search is not feasible, we suggest a greedy
rule that produces a single execution of the scheme that “hopefully” generates
a correct infinite schedule.

2.1 Overview of the Scheme

Let W = (wy,...,wy) and number of channels h be an instance of the windows
scheduling problem. Let w* = max; {w;}. We represent the pages state using
a set of buffers, By, Bs, ..., By,+. Each page is located in some buffer. A page
located in B; must be transmitted during the next j slots. Initially, buffer B;
includes all the pages with w; = j. We denote by b; the number of pages in B;
and by ¢; the location of i (i.e., i € By,).

In each iteration, the scheme schedules at most h pages on the h channels. By
definition, the pages of By must be scheduled. In addition, the scheme selects at
most h — by additional pages from other buffers to be scheduled in this iteration.
The way these pages are selected is the crucial part of the scheme and is discussed
later. After selecting the pages to be scheduled, the scheme updates the content
of the buffers.

— For all j > 1, all the non-scheduled pages located in B; are moved to B;_;.
— Each scheduled page, ¢, is placed in B,,, - to ensure that the next schedule
of ¢ will be during the next w; slots.

This description implies that the space complexity of the buffer scheme de-
pends on w*. However, by using a data structure that is ‘page-oriented’, the
buffer scheme can be implemented in space O(n).

From the pages’ point of view, a page is first located as far as possible (w;
slots) from a deadline (represented by By), it then gets closer and closer to the
deadline and can be selected to be transmitted in any time during this advance-
ment toward the deadline. With no specific rule for selecting which of the h — b,

144 A. Bar-Noy et al.

pages should be scheduled, the buffer scheme behaves like a nondeterministic
finite state machine with a very large state space, where a state is simply an
assignment of pages to buffers.

In running the buffer scheme nondeterministically, it fails if in some time
point by > h. The scheme is successful if it produces an infinite schedule. This
is equivalent to having two time slots ¢1,ts such that the states at ¢; and to are
identical. Given these two time slots, the page-selection sequence between ¢; and
to can be repeated forever to obtain an infinite schedule.

Theorem 1. When it does not fail, the buffers scheme produces a feasible sched-
ule, and any feasible schedule for WS can be produced by an execution of the
buffer scheme.

Remark: In our simulations and in the page-selection rules we suggest, no
channel is ‘idle’ in the execution; that is, exactly h pages are scheduled in each
time slot. It is important to observe that this no-idle policy is superior over
scheduling policies that allow idles.

2.2 Page Selection Criteria and Dead-Ends Detection

As mentioned above, the buffer scheme fails if at some time point by > h, that
is, more than h pages must be scheduled in the next time slot. However, we
can establish other, more tight, dead-end conditions. Then, by trying to avoid
these dead-ends, we can establish “good” page selection criteria. In this section,
we present a tight dead-end criteria, and describe how to greedily select pages
in each time slot in a way that delays (and hopefully avoids) a dead-end state.
Given a state of the buffers, let c(¢,7) denote the number of times ¢ must be
scheduled during the next j slots in any feasible schedule.

Claim. For any 1, j,
o 0 if j < ¥;
lij) 2 1+LﬂJ it j > ¢

Proof. If j < ¢;, that is, if 7 is located beyond the first j buffers, we do not need
to schedule ¢ at all during the next j slots. If j > ¢;, then we must schedule
once during the next ¢; slots. After this schedule, 7 will be located in B,,,. Note
that for any ¢, given that ¢ € B,,, we must schedule 7 at least |¢/w; | times during
the next t slots. In our case, we have t = j —¢;, since this is the minimal number
of slots that remains after the first schedule of i.

For example, if ¢; = 1, w; = 3 and j = 11, then ¢(4,5) = 4. This implies
that ¢ must be scheduled at least 4 times during the next 11 slots: once in the
next slot, and three more times in the remaining 10 slots. Let ¢(j) denote the
total number of page schedules the system must provide in the next j slots.
By definition, ¢(j) = Y., ¢(i,j). By definition, jh is the number of available
page schedules in the next j slots. Let f(j) = jh — ¢(j) denote the freedom level
existing in the next j slots.

A General Buffer Scheme for the Windows Scheduling Problem 145

If for some 7, f(j) < 0 then a dead-end state is reached. If f(j) = 0, then only
pages from the first j buffers must be scheduled in the next j slots. If f(j) > 0,
then some freedom exists in the way the pages are selected. That is, ¢(j) pages
must be selected from the first j buffers, and the remaining f(j) pages can come
from any buffer. In particular, for 7 = 1, only the pages in B; are considered,
thus, this rule generalizes the obvious condition for Bj.

Importantly, it is possible to know how many pages must be selected from
the first j buffers in the next slot. For any j, the system can provide at most
(j—1)h page-schedules during any j—1 slots. Thus, at least n(j) = c¢(j)—(j—1)h
pages from the first j buffers must be selected in the next slot in order to avoid
a dead-end. Again, this condition generalizes the condition for Bj.

2.3 Delaying Dead-Ends and Deterministic Rules

We present a greedy way to select the pages to be scheduled based on the pa-
rameters ¢(j) and n(j) that are calculated during the selection process. Let s
denote the number of pages selected so far in the current iteration. Initially,
j=1and s =0. As long as s < h, continue selecting pages as follows. For each
J, if n(j) > h the selection process fails. If n(j) = s, there are no constraints
due to B; (since s pages have already been selected from the first j buffers) and
the selection proceeds to j + 1. Otherwise (s < n(j) < h), select from the first j
buffers n(j) — s pages that were not selected yet, and proceed to j+ 1. Note that
this scheme is still nondeterministic because we have not yet specified exactly
which pages are scheduled. We call this scheme the restricted buffer scheme.

Theorem 2. Any legal schedule for WS can be generated by the restricted buffer
scheme.

We now give some deterministic rules for deciding exactly which pages to
schedule in a restricted buffer scheme. In applying the restricted buffer scheme,
it must determine, given a specific k and j, which k pages from the first j buffers
are to be scheduled in the next time slot. Naturally, high priority is given to pages
whose transmission will reduce the most the load on the channels.

This load can be measured by a potential function based on the locations
of the pages. We suggest two greedy selection rules, each of them maximizes
a different potential function. Our first greedy rule is suitable for the potential
function ¢y =), ¢;. Our second greedy rule is suitable for the potential function
¢2 =Y, li/w;. These two approaches are realized by the following rules:

1. Select pages for which w; — £; is maximal.
2. Select pages for which (w; — ¢;)/w; is maximal.

In the first rule, denoted LBM (Largest Backward Move), pages that can in-
crease ¢1 the most are selected. In LBM, pages that will move the most are
scheduled first. In the second rule, denoted WLBM (weighted LBM), the pages
that increase ¢o the most are selected. Each of these rules can be applied when
ties are broken in favor of pages associated with smaller windows or larger win-
dows. Our simulations reveal that breaking ties in favor of pages with small

146 A. Bar-Noy et al.

windows performs better for almost all inputs. On the other hand, we can-
not crown any of these two rules as the ultimate winner. For the first rule we
show that it is optimal for a large set of instances, even without the dead-end
detection of the restricted buffer scheme. The second rule performs better on
large harmonic instances. For both rules, the simulations give good results (see
Section 3).

In our simulations, a third natural greedy rule is considered, Farliest Dead-
line First, in which the pages with minimal ¢; are selected. This rule is optimal
for other periodic scheduling problems that care about average gaps (e.g., peri-
odic scheduling [17] and the chairman assignment problem [20]). However, in our
problem this rule performs poorly. This can be explained by the fact that dead-
lines are well considered by the dead-end detection mechanism of the restricted
buffer scheme. The role of the additional page selection is to reduce future load
on the channels.

2.4 The LBM Selection Rule

Let LBM be the buffer scheme with the greedy rule that prefers pages with large
(w; — ;) and breaks ties in favor of pages with smaller windows. We show that
LBM is optimal for a large set of instances even without the dead-end detection
mechanism of the restricted buffer scheme. Without dead-end detection, LBM
runs as follows:

1. Initialization: Put ¢ in buffer B,,, for all 1 <7 < n.
2. In each time slot:

(a) If by > h then terminate with a failure.

(b) Otherwise, schedule all the pages from Bj.

(c¢) If h > by, select h — by additional pages with the largest (w; — ¢;), break
ties in favor of pages with smaller windows.

Optimality for Divisible-size Instances:

Definition 1. An instance W of WS is a divisible-size instance, if w;+1 divides
w; in the sorted sequence of windows wy > -+ > w; > Wiy1 > -+ > Wy, for all
1< <n.

For example, an instance in which all the windows are powers of 2 is a
divisible-size instance. The divisible-size constraint is not unreasonable. For ex-
ample, pages could be advertising slots which are only offered in windows that
are powers of 2, in a way that magazines sell space only in certain fractions, 1/2
page, 1/4 page, and so on. The following Theorem proves that LBM is optimal
for divisible-size instances.

Theorem 3. If an instance, W, of WS is a divisible-size instance and h >
ho(W), then LBM never fails.

A General Buffer Scheme for the Windows Scheduling Problem 147

3 Deterministic Rules Experiments

We simulated the buffer scheme with the deterministic page-selection rules given
in Section 2.3. The performance of the buffer scheme, measured by the number
of channels required to schedule the pages, was compared for each instance, W,
with the lower bound ho(W) and with the number of channels required by the
greedy algorithm, Best-Fit Increasing (BFI), given in [5]. The algorithm BFI
schedules the pages in non-decreasing order of their window request. Page ¢ with
window request w; is assigned to a channel that can allocate to it a window w)
such that w; — w} is non-negative and minimal. In other words, when scheduling
the next page, BFI tries to minimize the lost width (1/w} — 1/w;). Note that
BFT produces only perfect schedules.

In our simulations we considered several classes of instances. In this extended
abstract we report about two of them:
(1) Random - Sequences generated randomly, w; is chosen randomly in 2,. .., 500
according to the following distribution. Let S = Z;ﬁ%l then the probability
of choosing w; = ¢ is i/S. The simulation results for random instances are
shown in Figure 1. The same set of randomly chosen pages was scheduled by
the greedy BFI algorithm, by the buffer scheme using the LBM rule and by
the buffer scheme using the weighted LBM rule. It can be seen that the buffer
scheme always performs better, or not worse, than the greedy algorithm. Also,
the buffer scheme is always within one channel from the lower bound (given by

ho(W)).
(#4) Harmonic - H, = (1,2,...,n). The simulation results for Harmonic in-
stances is shown in Figure 2. For each number of channels h = 2,...,8 and for

each rule, the maximal n such that H,, is scheduled successfully is presented.
For these instances, the algorithm BFI performs better than any of the deter-
ministic rules of the buffer scheme. The differences though are not significant.
In particular, for any harmonic sequence, none of the rules failed on ho(W)+1
channels.

2 — 1000}

1B s
.| O ssism —

O sswiem

g

Channels Used
Largest n

600 700 $00 900 1000 100 1200 1300 0

Number of Pases Channels Used

Fig. 1. Simulation results for random Fig. 2. Simulation results for harmonic
instances instances

148 A. Bar-Noy et al.

4 The Exhaustive Buffer Scheme

In this section, we demonstrate the usefulness of the buffer scheme for practical
cases for which it is possible to run an efficient implementation of the scheme that
exhausts all possible solutions. Dead-end detection is integrated in the search.
It enables early pruning of dead-end states and ensures reasonable cycle-search
time. We use the scheme to find the best schedules for some instances and to
prove non-trivial impossibility results for other instances.

To obtain our results, we reduce the problem of finding a schedule based on
the buffer scheme to the problem of detecting a directed cycle in a finite directed
graph. This problem can be solved using standard Depth First Search (DFS).
Consider the directed graph G in which each vertex represents a possible state
of the buffers, and there is an edge from vy to vy if and only if it is possible to
move from the state represented by v; to the state represented by v in one time
slot - that is, by scheduling h pages (including all the pages of B;) and updating
the resulting page locations as needed. Note that G is finite since the number of
pages is finite and each page has a finite number of potential locations. Now use
a standard DFS to detect if there is a directed cycle. If a cycle is detected, then
this cycle induces an infinite schedule. If no directed cycle exists, by Theorem 1,
there is no schedule.

Windows Scheduling for Broadcasting Schemes: The buffer scheme can find for
small values of n the minimal d such that there exists a schedule of the in-
stance W = (d,...,d+n—1) on h channels. These instances are of special
interest for the media-on-demand application since a schedule of W would imply
a broadcasting scheme for h channels with delay guaranteed at most d/n of the
media length (using the shifting technique presented in [6]). In this scheme, the
transmission is partitioned into n segments. The trade-off is between the num-
ber of segments and the delay. Table 1 summarizes our simulation results for
n =5,6,7,8 segments and a single channel. For each 5 < n < 8, we performed
an efficient exhaustive search over all possible executions of the buffer scheme.
While for some values of n the optimal schedules are perfect and can be gener-
ated by simple greedy heuristics, for other values of n, the non-perfect schedules
produced by the buffer scheme are the only known schedules. This indicates that
for some values of n and d the best schedule is not perfect. No existing technique
can produce such schedules.

To illustrate that optimal schedules might be non-structured, we present the
optimal one-channel schedule for (5,...,11). No specific selection rule was ap-

Table 1. Some best possible schedules for small number of segments

l# of segments“best range[delay ‘

5 1.8 4/5=038

6 5.10 | 5/6 = 0.833
7 5.11 | 5/7=0.714
8 6..13 6/8 = 0.75

A General Buffer Scheme for the Windows Scheduling Problem 149

plied to produce this schedule, it was generated by exhaustive search over the
non-deterministic execution of the buffer scheme. [10,9,7,5,8,6,9,11,5,7,10,6, 8,
5,11,9,7,6,5,8,10,6,7,5,9,11,6,8,5,7,10,9,6,5,7,8,11, 5, 6].

Impossibility Results: Using the buffer scheme, we were able to solve an open
problem from [5] by proving that no schedule exists on three channels for the
instance Hyp = (1,...,10) even though 2321 1/i < 3. Using the early detection
of dead-ends we able to reduce the search proving impossibility from 3,628,800
states to only 60,000 states. Using similar techniques we determined that there
are no one channel schedules for any of the sequences (3..7), (4..9) , (4..10), and
(5..12). This means that the ranges given in the Table 1 are optimal.

Arbitrary Instances: Most of the previous algorithms suggested for WS produce
perfect schedules. The buffer scheme removes this constraint. We demonstrate
this by the following, one out of many, example. Consider the instance W =
(3,5,8,8,8). Using the fact that ged(3,8) = ged(3,5) = 1, it can be shown that
there is no perfect schedule for W on a single channel. The exhaustive search
and the deterministic buffer scheme with LBM produce the following non-perfect
schedule for W:

[3a 53 8(1737 8b7 57 37 80a 8(1737 57 8()7 37 80a 53 3; 8(17 8b737 5a 80a H }

We could not find any special pattern or structure in this schedule, suggesting
that the only non-manual way to produce it is by using the buffer scheme.

5 Extensions to Other Models

We show how the buffer scheme paradigm can be extended to more general envi-
ronments. As opposed to other known heuristics for WS, the first two extensions
are simple and natural.

Dynamic Window Scheduling: In the dynamic (on-line) version of WS, pages
arrive and depart over time [9]. This can be supported by the buffer scheme as
follows: (i) Any arriving page with window w; is placed upon arrival in B,,.
(#4) Any departing page is removed from its current location. The number A of
active channels can be adjusted according to the current load. That is, add a
new channel whenever the current total width is larger than some threshold (to
be determined by the scheme), and release some active channels whenever the
current total load is smaller than some threshold.

Window Scheduling with Jitter: In this model, each page is associated with a
pair of window sizes (w},w;) meaning that ¢ needs to be scheduled at least once
in any window of w; time slots, and at most once in any window of w; time
slots. That is, the gap between consecutive appearances of i in the schedule
must be between w} and w;. In the original WS, w} =1 for all 1 < i < n. In the
other extreme, in which w} = w;, only perfect schedules are feasible and the gap

150 A. Bar-Noy et al.

between any two appearances of i in the schedule is exactly w;. To support such
instances with a buffer scheme, we modify the page-selection rules as follows: (i)
After scheduling ¢, put it in buffer B,,,. (i7) Page i can be selected for scheduling
only if it is currently located in one of the buffers By, Bo, ... s By —w+1. This
ensures that at least w; slots have passed since the last time ¢ was scheduled.
The first selection of ¢ can be from any buffer.

Pages with Different Lengths: In this model, each page is associated with a win-
dow w; and with a length p;. Page ¢ needs to be allocated at least p; transmission
slots in any window of w; slots. Clearly, p; < w; for all 1 < i < n, otherwise it is
impossible to schedule this page. We consider non-preemptive windows schedul-
ing in which for any i, the p; slots allocated to ¢ must be successive. In other
words, ¢ must be scheduled non-preemptively on the channels and the gap be-
tween any two beginnings of schedules is at most w;.! To support pages with
different lengths, each ¢ is represented as a chain of p; page-segments of length
1. Due to lack of space we do not give here the full details of how these page
segments are selected one after the other.

References

1. S. Acharya, M. J. Franklin, and S. Zdonik. Dissemination-based data delivery
using broadcast disks. IEEE Personal Communications, Vol. 2, No. 6, 50-60, 1995.

2. M. H. Ammar and J. W.Wong. The design of teletext broadcast cycles. Perfor-
mance Evaluation, Vol. 5, No. 4, 235-242, 1985.

3. S. Anily, C. A. Glass, and R. Hassin. The scheduling of maintenance service.
Discrete Applied Mathematics, Vol. 82, 27-42, 1998.

4. A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation
costs of periodic scheduling. Mathematics of Operations Research, Vol. 27, No. 3,
518-544, 2002.

5. A.Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems.
SIAM Journal on Computing (SICOMP), Vol. 32, No. 4, 1091-1113, 2003.

6. A. Bar-Noy, R. E. Ladner, and T. Tamir. Scheduling techniques for media-on-
demand. Proc. of the 14-th SODA, 791-800, 2003.

7. A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
bin-packing problem. Proc. of the 15-th SODA, 217-226, 2004.

8. S. K. Baruah S-S. Lin. Pfair Scheduling of Generalized Pinwheel Task Systems
IEEFE Trans. on Comp., Vol. 47, 812-816, 1998.

9. W. T. Chan and P. W. H. Wong, On-line Windows Scheduling of Temporary Items,
Proc. of the 15th ISAAC, 259-270, 2004.

10. M. Y. Chan and F. Chin. General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. on Computers, Vol. 41, 755-768, 1992.

11. M. Y. Chan and F. Chin. Schedulers for larger classes of pinwheel instances.
Algorithmica, Vol. 9, 425-462, 1993.

! In a work in progress about WS with arbitrary length pages, we show that preemptive
WS is equivalent to WS of unit-length pages. Thus, we consider here only the more
restricted problem of non-preemptive scheduling.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A General Buffer Scheme for the Windows Scheduling Problem 151

E. A. Feinberg, M. Bender, M. Curry, D. Huang, T. Koutsoudis, and J. Bernstein.
Sensor resource management for an airborne early warning radar. In Proceedings
of SPIE The International Society of Optical Engineering, 145-156, 2002.

R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real-
time scheduling problem. In Proc. of the 22-nd Hawaii International Conf. on
System Sciences, 693—702, 1989.

R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel. Pinwheel scheduling with two
distinct numbers. Theoretical Computer Science, Vol. 100, 105-135, 1992.

K. A. Hua and S. Sheu. An efficient periodic broadcast technique for digital video
libraries. Multimedia Tools and Applications. Vol. 10, 157-177, 2000.

L. Juhn and L. Tseng. Harmonic broadcasting for video-on-demand service. IEEE
Transactions on Broadcasting, Vol. 43, No. 3, 268-271, 1997.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, Vol. 20, No. 1, 46-61, 1973.
J.F. Paris, S. W. Carter, and D. D. E. Long. A hybrid broadcasting protocol for
video on demand. Proc. of the IS&T/SPIE Conference on Multimedia Computing
and Networking, 317-326, 1999.

J.F. Péaris. A broadcasting protocol for video-on-demand using optional partial
preloading. XIth International Conference on Computing, Vol. I, 319-329, 2002.
R. Tijdeman. The chairman assignment problem. Discrete Mathematics, Vol. 32,
323-330, 1980.

S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service
using pyramid broadcasting. ACM Multimedia Systems Journal, Vol. 4, No. 3,
197-208, 1996.

W. Wei and C. Liu. On a periodic maintenance problem. Operations Res. Letters,
Vol. 2, 90-93, 1983.

Implementation of Approximation Algorithms
for the Multicast Congestion Problem

Qiang Lu®* and Hu Zhang? **

! College of Civil Engineering and Architecture,
Zhejiang University, Hangzhou 310027, China
qlu66@zju.edu.cn
2 Department of Computing and Software, McMaster University,
1280 Main Street West, Hamilton,

Ontario L8S 4K1, Canada
zhanghu@mcmaster.ca

Abstract. We implement the approximation algorithm for the multi-
cast congestion problem in communication networks in [14] based on the
fast approximation algorithm for packing problems in [13]. We use an
approximate minimum Steiner tree solver as an oracle in our implemen-
tation. Furthermore, we design some heuristics for our implementation
such that both the quality of solution and the running time are improved
significantly, while the correctness of the solution is preserved. We also
present brief analysis of these heuristics. Numerical results are reported
for large scale instances. We show that our implementation results are
much better than the results of a theoretically good algorithm in [10].

1 Introduction

We study the multicast congestion problem in communication networks. In a
given communication network represented by an undirected graph G = (V, E)
with |V| = n and |E| = m, each vertex v represents a processor, which is able to
receive, duplicate and send data packets. A multicast request is a set S C V of
vertices (called terminals) which are to be connected such that they can receive
copies of the same data packet from the source simultaneously. To fulfil a request

* This work was done in part when this author was visiting the University of Kiel.
Research supported in part by a scholar visiting program between the University
of Kiel and Zhejiang University, by DGET, Zh0446, WAARD, G10444, grant of
Zhejiang University.

This work was done in part when this author was studying at the University of Kiel,
Germany. Research supported in part by the DFG Graduiertenkolleg 357, Effiziente
Algorithmen und Mehrskalenmethoden, by EU Thematic Network APPOL II, Ap-
proximation and Online Algorithms for Optimization Problems, IST-2001-32007, by
EU Project CRESCCO, Critical Resource Sharing for Cooperation in Complex Sys-
tems, IST-2001-33135, by an MITACS grant of Canada, by the NSERC Discovery
Grant DG 5-48923, and by the Canada Research Chair program.

* K

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 152-164, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Multicast Congestion Problem 153

S, one subtree T" in G is to be generated for spanning S, called an S-tree. In the
multicast congestion problem in communication networks we are given a graph
G and a set of multicast requests S1,..., S C V. A feasible solution is a set of
k trees 11, ..., Ty, where T, connects the terminals in Sy, called an S, -tree. The
congestion of an edge in a solution is the number of S;-trees which use the edge.
The goal of the problem is to find a solution of S;-trees for all ¢ =1,...,k that
minimizes the maximum edge congestion.

If each request consists of only two terminals, the multicast congestion prob-
lem is reduced to the standard routing problem of finding integral paths with
minimum congestion. In fact it is a generalization of the problem of finding
edge disjoint shortest paths for source and destination pairs. This problem is
NP-hard [15] and hence the multicast congestion problem is also N'P-hard.

Another related problem is the Steiner tree problem in graphs. Given a graph
G = (V,E), aset S CV of terminals and a non-negative length function (cost
or weight) on the edges, a Steiner tree T is a subtree spanning all vertices in S.
The vertices of T may be in V'\ S. The goal of the Steiner tree problem in graphs
is to find a minimum Steiner tree, i.e., a Steiner tree with minimum total edge
length. Compared with the multicast congestion problem, in the Steiner tree
problem there is only a single multicast and the objective function is different.
However, the Steiner tree problem is proved AP X-hard [15,1, 5]:

Proposition 1. The Steiner tree problem in graphs is N'P-hard, even for un-
weighted graphs. Furthermore, there exists a constant ¢ > 1 such that there is no
polynomial-time approximation algorithm for the Steiner tree problem in graphs
with an approzimation ratio less than ¢, unless P = N'P.

The best known lower bound is ¢ = 96/95 ~ 1.0105 [8].

Since the multicast congestion problem is A/P-hard, interests turn to approx-
imation algorithms. In [20] a routing problem in the design of a certain class of
VLSI circuits was studied as a special case of the multicast congestion problem.
The goal is to reduce the maximum edge congestion of a two-dimensional rec-
tilinear lattice with a specific set of a polynomial number of trees. By solving
the relaxation of the integer linear program and applying randomized rounding,
a randomized algorithm was proposed such that the congestion is bounded by
OPT + O(\/OPT In(n?/e)) with probability 1 — e when OPT is sufficiently
large, where OPT is the optimal value. Vempala and Vocking [22] proposed
an approximation algorithm for the multicast congestion problem. They applied
a separation oracle and decomposed the fractional solution for each multicast
into a set of paths. An O(lnn)-approximate solution can be delivered in time
O(n®a?+n"a) by their algorithm, where « involves the number k and some other
logarithmic factors. Carr and Vempala [6] proposed a randomized asymptotic
algorithm for the multicast congestion problem with a constant approximation
ratio. They analyzed the solution to the linear programming (LP) relaxation by
the ellipsoid method, and showed that it is a convex combination of S;-trees. By
picking a tree with probability equal to its convex multiplier, they obtained a
solution with congestions bounded by 2exp(1)c- OPT 4+ O(Inn) with probabil-
ity at least 1 — 1/n, where ¢ > 1 is the approximation ratio of the approximate

154 Q. Lu and H. Zhang

minimum Steiner tree solver. The algorithm needs O(n”) time including k as a
multiplication factor. Without awareness of above theoretical results, Chen et
al. [7] studied this problem from practical point of view, which was called mul-
ticast packing problem in their paper. They showed some lower bounds for the
problem and implemented some instances with small sizes by the branch-and-cut
algorithm. More works on the multicast packing problem can be found in [18].

Baltz and Srivastav [3] studied the multicast congestion problem and pro-
posed a formulation based on the ideas of Klein et al. [16] for the concurrent
multicommodity flow problem with uniform capacities. The integer linear pro-
gram has an exponential number of variables and they constructed a combinato-
rial LP-algorithm to obtain a polynomial number of S -trees for each multicast
request S,. Finally a randomized rounding technique in [19] was applied. The
solution of their algorithm is bounded by

(1+¢€)e-OPT + (1+¢)(exp(l) — 1)vVe- OPT Inm, if ¢- OPT > Inm,

(14+¢e)exp(l)Inm
(1+e)e- OPT + 1+ 1In(lnm/(c- OPT))’

(1)

otherwise.

In the case ¢- OPT > Inm the bound is in fact (1 +) exp(1)c- OPT and oth-
erwise it is (1+¢&)c- OPT + O(Inm). The running time is O(fnk3c =2 In®(m/¢) -
min{lnm,Ink}), where § is the running time of the approximate minimum
Steiner tree solver. A randomized asymptotic approximation algorithm for the
multicast congestion problem was presented in [14]. They applied the fast ap-
proximation algorithm for packing problems in [13] to solve the LP relaxation
of the integer linear program in [3]. They showed that the block problem is the
Steiner tree problem. The solution hence is bounded by (1) and the running time
is improved to O(m(Inm + e 2Ine~1) (kB + mInln(me~1))). Baltz and Srivas-
tav [4] further proposed an approximation algorithm for the multicast congestion
problem based on the algorithm for packing problems in [10], which has the best
known complexity O(k(m + B3)e~2?InkInm). They also conducted some imple-
mentation with typical instances to explore the behaviour of the algorithms. It
was reported that the algorithm in [10] is very impractical. In addition, they
presented a heuristic based on an online algorithm in [2], which can find good
solutions for their test instances within a few iterations.

In this paper we implement the algorithm in [14] with large scale instances.
We design some heuristics to speed up the computation and to improve the
quality of solution delivered in our implementation. We also present brief analysis
of the heuristics. The numerical results show that the algorithm for packing
problems [13] is reliable and practical. We also compare our results with those by
the algorithm in [10] and the heuristic in [4]. Because other algorithms mentioned
above are very impractical, we do not consider them for implementation.

The paper is organized as follows: In Section 2 the approximation algorithm
for the multicast congestion problem in [14] is briefly reviewed. We analyze
the technique to overcome the hardness of exponential number of variables in
Section 3. Our heuristics are presented in Section 4. Finally, numerical results
are reported in Section 5 with comparison with other approaches.

Multicast Congestion Problem 155

2 Approximation Algorithm

Let 7, be the set of all Sg-trees for any g € {1,...,k}. Here the cardinality of 7,
may be exponentially large. Define by z,(T") a variable indicating whether the
tree T' € 7, is chosen in a solution for the multicast request S;. Based on the
idea in [3,4], the following integer linear program can be formulated:

min A

St 0y orer, & ever Ta(T) < A foralli € {1,...,m}; @
ZTeTq zq(T) =1, forall g € {1,...,k};
zq(T) € {0, 1}, for all ¢ and all T € 7,

where A is the maximum congestion. The first set of constraints show that the
congestion on any edge is bounded by A, and the second set of constraints indicate
that exact one Steiner tree is chosen for one request. As usual, the strategy is
to first solve the LP relaxation of (2) and then round the fractional solution to
a feasible solution.

We define a vector z, = (24(T1), 24(T3),...)T for all Ty, Ty, ... € T, repre-
senting the vector of indicator variables corresponding to all Steiner trees for

the g-th request. Denote by a vector = (z7,... 7$£)T the vector of all in-
dicator variables. Furthermore, a vector function f(z) = (fi(z),..., fm(z))T

is used, where f;(z) = 22:1 ZTGTQ & e;er Tq(T) represents the congestion on
edge ¢;, for i € {1,...,m}. In addition, we define by B = B; X ... X By where
By = {(zg(D)"|T € Tg, Y per, 2q(T) = 1,24(T) > 0}, for ¢ € {1,... k}. Tt
is obvious that z, € B, and € B. In this way the LP relaxation of (2) is
formulated as the following packing problem (the linear case of the min-maz re-
source sharing problems [12,24,13]): min{\|f(z) < A\,x € B}. Thus we are able
to use the approximation algorithm for packing problems [13] to solve the LP
relaxation of (2).

The computational bottleneck lies on the exponential number of variables
z¢(T) in (2). The algorithm for packing problems in [13] is employed in [14]
with a column generation technique implicitly applied. We briefly describe the
algorithm as follows. The algorithm is an iterative method. In each iteration
(coordination step) there are three steps. In the first step a price vector w is
calculated according to current iterate x. Then an approximate block solver is
called as an oracle to generate an approximate solution Z corresponding to the
price vector w in the second step. In the third step the iterate is moved to
(1 — 7)x 4+ 7& with an appropriate step length 7 € (0,1). The coordination step
stops when any one of two stopping rules holds with respect to an relative error
tolerance o, which indicates that the resulting iterate is a ¢(1 4 o)-approximate
solution. Scaling phase strategy is applied to reduce the coordination complexity.
In the first phase 0 = 1 is set. When a coordination step stops, current phase
finishes and o is halved to start a new phase, until o < e. Finally the delivered
solution fulfils A(z) < ¢(1 + €)A*, where A* is the optimum value of the LP
relaxation of (2) (See [13,14]).

156 Q. Lu and H. Zhang

The block problem is exactly the Steiner tree problem in graphs and the
edge length function is the price vector w [14]. So k minimum Steiner trees
are computed corresponding to the k requests Si,..., Sk with respect to the
length function in current iteration. In the iterative procedure lengths on the
edges with large congestions increase while edges with small congestions have
decreasing lengths. In this way the edges with large congestions are punished
and have low probability to be selected in the generated Steiner trees. The
best known algorithm for the Steiner tree problem has an approximation ratio
¢ =14 (In3)/2 ~ 1.550 [21] but the complexity is large. So in our implemen-
tation, we use a 2-approximate minimum Steiner tree solver (MSTS) as the
block solver, and its time complexity is O(m + nlnn) [17,9]. We call this al-
gorithm MC and its details can be found in [13,14]. Then the following result
holds [13, 14]:

Theorem 1. For a given relative accuracy € € (0,1), Algorithm MC delivers a
solution z such that M\(z) < c(1+e)A* in N = O(m(lnm + e 2Ine~ 1)) itera-
tions. The overall complexity of Algorithm MC is O(m(Inm + e 2Ine 1) (k3 +
mInin(me1))), where 3 is the complexity of the approzimate minimum Steiner
tree solver.

3 The Number of Variables

In the LP relaxation of (2), there can be an exponential number of variables.
However, with the algorithm in [13, 14], a column generation technique is auto-
matically applied and totally the trees generated by the algorithm is a polynomial
size subset of 7 = U’;:l’];.

If a Steiner tree Ty, € 7 is chosen for a request Sy, the corresponding indica-
tor variable is set to x4, = 1. In the fractional sense, it represents the probability
to choose the corresponding Steiner tree T,,. For any tree T, € 7, for a request
Sq, if it is not generated by MSTS in any iteration of Algorithm MC, then
the corresponding indicator variable z,. = 0, which shows that it will never be
chosen. Because in each iteration, there are k Steiner trees generated for the k
requests, respectively, we conclude that there are only polynomially many trees
generated in Algorithm MC according to Theorem 1:

Theorem 2. When Algorithm MC halts, there are only O(km(lnm+e~2Ine~1))
non-zero indicator variables of the vector x and only the same number of Steiner
trees generated.

In our implementation, we maintain a vector = with a size k(N + 1), where
N is the actual number of iterations. We also maintain a set 7 of Steiner trees
generated in the algorithm. Notice that here 7 is not the set of all feasible Steiner
trees. At the beginning the set 7 is empty and all components of x are zeros. In
the initialization step, k Steiner trees are generated. Then the first £ components
of = are all ones and the corresponding generated k Steiner trees T7,...,T} are
included in 7. In the j-th iteration, for the g-th request a Steiner tree T4 is

Multicast Congestion Problem 157

generated. No matter whether it is identical to any previously generated tree,
we just consider it as a new one and include it in the tree set 7. Meanwhile, we
set the corresponding components Zx44 = 1. Therefore after the j-th iteration
there are totally (j 4+ 1)k nonzero indicator variables (nonzero probability to
select the corresponding trees in 7). Finally, there are |7| = (N + 1)k non-zero
indicator variables.

However, in practice it is not easy to estimate the exact value of NV in ad-
vance as there is only an upper bound O(m(Inm + ¢ ?Ine~1)) for N. In our
implementation, we set N = 100. If it is insufficient we will double it, until the
value of IV suffices. In fact according to our implementation results the setting
N = 100 is enough as for all of our test instances there are only O(k) Steiner
trees generated (See Section 5).

4 Heuristics

4.1 Choose the Step Length

In Algorithm MC the step length 7 is set as t0v/(2m(w?T f(z) + w? f(2))) as
in [13,14], where ¢t and 0 are parameters for computing the price vector, and
v = (wlf(z) —wl f(2))/(wT f(z) + wT (%)) is a parameter for stopping rules.
In the last coordination steps of MC, we have that ¢ = O(e) and v = O(e)
according to the scaling phase and the stopping rules, respectively. Assuming
that 0/(w? f+w? f) = O(1), we notice that 7 = O(2/m) is very small. It means
that the contribution of the block solution is very tiny and the iterate moves to
the desired neighbourhood of the optimum very slowly, which results in a large
number of iterations (though the bound in Theorem 1 still holds). In fact in our
implementation we find that even at the beginning of the iterative procedure
the value of 7 defined in [13, 14] is too small. In [11, 13] it is mentioned that any
7 € (0,1) can be employed as the step length. We test several feasible settings
of 7 such as 7 = 1 — t0v/(2m(w” f +wT f)), 7 = 1 — v and 7 = v. Experimental
results show that 7 = v is the best among them. With this heuristic, the number
of iterations is reduced significantly (see Section 5).

4.2 Remove the Scaling Phase

In our implementation we set ¢ = 107°. In this way we are able to estimate the
number of scaling phases Ny = —loge = 5log 10 = 16.61. Therefore in the total
computation there should be 17 scaling phases. In fact we find that in many
cases in our implementation there is only one iteration in each scaling phase.
Thus, the number of scaling phases dominates the overall number of iterations
and there are only O(1) iterations in a scaling phase.

We notice that in [13] the algorithm without scaling phase is also mentioned
and the corresponding coordination complexity is O(mc?(Inm+e=2+e 3 Inc)).
In our implementation ¢ = 2 is a constant so the complexity does not increase
much. In practice with this strategy the algorithm could run faster, especially

158 Q. Lu and H. Zhang

when there are only very few iterations in each scaling phase. Therefore we use
this approach and the number of iterations is reduced.

4.3 Add Only One Steiner Tree in Each Iteration

Algorithm MC calls the block solver MSTS k times independently for the k
requests in each iteration. We now consider Example 1 which leads to hard-
ness for finding an optimum solution. The instance is as follows: In the graph
G, |V| = 4 and |E| = 5. The edges are (1,2), (1,3), (2,3), (1,4) and (2,4)
(see Figure 1(a)). There are 3 identical requests S, = {1,2} for ¢ = 1,2,3. In
general we can also study the graphs with |V| = p, |E| = 2p — 3, with edge
set £ = {(1,2),(1,9),(¢,2)]i = 3,...,p} and identical requests S, = {1,2} for
g=1,...,.p—1forpe N and p > 4.

In the initialization step of Algorithm MC, each edge is assigned an identical
length 1/5. For all requests, the minimum Steiner trees T, ¢ = 1,2, 3 are all the
path containing only edge (1, 2), with a total length 1/5. After T} is generated for
the first request S7, Algorithm MC is not aware of the change of the congestion
on edge (1,2), and still assign the identical trees Tp and T3 to requests Sy and
Ss. After the initialization congestions of edges are all zero except for edge (1, 2),
which has a congestion 3 (see Figure 1(b)). In the first iteration, the edge lengths
changes and the length on edge (1, 2) is the maximum, and other edges have very
small lengths. Therefore Algorithm MC will choose the path {(1,3),(3,2)} as
T, for S1. With the same arguments, other requests are also assigned the path
{(1,3),(3,2)} as their corresponding minimum Steiner trees (see Figure 1(c)). In
the second iteration all requests are assigned the path {(1,4), (4,1)} (see Figure
1(d)) and in the third iteration the solution returns back to the case in Figure
1(b). This procedure continues and in each iteration only one path is used for all
requests, which leads to a wrong solution with always a maximum congestion 3.
It is also verified by our implementation.

This problem does not result from Algorithm MC itself but from the data
structure (the indices of the vertices and edges). An intuitive approach is to
re-index the nodes (and hence edges) after each Steiner tree is generated. How-
ever, this approach causes large computational cost of re-indexing. The strategy
we apply here is to establish a permutation of the requests. In each iteration
only one request is chosen according to the permutation, and a Steiner tree is

(a) (b) (c) (d)

Fig. 1. Examples 1

Multicast Congestion Problem 159

generated by MSTS for the chosen request. This method is applied in [23] to
solve the packing problems with block structured variables but with a standard
(not weak) approximate block solver. The bound on the number of iterations
is O(kInm(Inmin{k,m} + e2)), where k is the number of blocks of variables.
There is also a randomized algorithm for such problems [11] with a number of
iterations bounded by O(klnm(lnk + £72)). In our problem there are also k
blocks of indicator variables corresponding to the k requests. But there are only
weak block solvers with the approximation ratio ¢ > 1. So we apply this method
as a heuristic in our implementation. Furthermore, in our implementation we
find it is not necessary to construct and maintain the permutation. We can just
choose the requests according to their indices. In this way the optimum solution
can be attained in only 3 iterations for Example 1 such that the three requests
are realized by the three disjoint paths between vertex 1 and 2.

It is interesting that when this heuristic is employed, not only the quality of
the solution but also the running time are improved. In fact for many instances
with symmetric topology structure, such a problem due to data structure can
happen without our heuristic or the re-indexing approach.

4.4 Punish the Edges with Large Congestions

We use a 2-approximate minimum Steiner tree solver (¢ = 2) here as the block
solver in our implementation. We notice that with the above heuristics we can
only obtain a solution bounded by (1) as indicated in our implementation results
(see Section 5). In fact our implementation shows that as soon as the solution
fulfils (1) for ¢ = 2, the algorithm halts immediately. In order to obtain a better
approximate solution still with MS7TS, we could modify the stopping rules to
force the algorithm to continue running with more iterations. However, here we
use another heuristic without changing the stopping rules in order to avoid more
running time.

The price vector is used as edge length in our algorithm for the Steiner tree
problem. It is obvious that a large congestion leads to a large length on the edge.
Thus we can add extra punishment to edges with large congestions to balance
the edge congestions over the whole graph. We apply the following strategy:

First we define an edge e; high-congested if its congestion f; fulfils the follow-
ing inequality: R

A—fi <r(A=X). (3)

Here)\ is the maximum congestion in current iteration, A is the average conges-
tion defined as the sum of congestions over all edges divided by the number of
edges with nonzero congestions, and r is a ratio depending on the quality of the
current solution defined as follows:

r=1/1— (o - N2/A2 (4)

where A\g > A is the maximum congestion of the initial solution. According to
(4), r € (0,1]. In addition, (4) is an ellipse function. At the beginning A &~ Ag
so 7 ~ 1. With the maximum congestion being reduced, the value of r also

160 Q. Lu and H. Zhang

decreases. Furthermore, according to the property of the ellipse function, at the
beginning of the iterative procedure the value of r decreases slowly. When the
congestions are well distributed, r reduces quickly. This formulation guarantees
that at the beginning of the iterative procedure there is a large portion of high-
congested edges while later there is only a small portion.

Next we re-assign length function to all edges in the graph. For any edge not
high-congested, we keep its length as computed by the method in [13,14]. For a
high-congested edge, we set its length as its current congestion. Afterwards we
normalize all edge lengths such that the sum of lengths of all edges is exactly
one. Our implementation shows that this technique can not only improve the
quality of solution but also speed up the convergence (with less iterations).

5 Experimental Results

Our test instances are two-dimensional rectilinear lattices (grid graphs with cer-
tain rectangular holes). These instances typically arise in VLST logic chip design
problems and the holes represent big arrays on the chips. These instances are re-
garded hard for path- or tree-packing problems. The instances have the following
sizes:

Ezample 1. n = 2079 and m = 4059; k£ = 50 to 2000.
FEzample 2. n =500 and m = 940; k = 50 to 300.
Ezample 3. n = 4604 and m = 9058; £ = 50 to 500.
Ezample 4. n = 1277 and m = 2464; k = 50 to 500.

We first demonstrate the influence of the heuristics mentioned in Section 4
by a hard instance. The instance belongs to Instance 3 with 4604 vertices, 9058
edges and 100 requests. The sizes of requests varies and the smallest request has
5 vertices. We test our algorithm without or with heuristics and the results are
shown in Table 1.

We refer Algorithm 1 the original Algorithm MC without any heuristics.
Algorithm 2 is referred to Algorithm MC with the heuristic to add only one
Steiner tree in each iteration. For Algorithm 3, we refer the algorithm similar to
Algorithm 2 but with step length 7 = v. Algorithm 4 is similar to Algorithm 3
but with extra punishment to high-congested edges. It is worth noting that in
Algorithm 1, the block solver MSTS is called k times in each iteration, while

Table 1. Numerical results of Algorithm MC without and with heuristics

Alg. 1|Alg. 2|Alg. 3|Alg. 4
Initial Congestion| 17 17 17 17
Final Congestion | 17 13 6 4
Number of Calls | — 44 85 90

Multicast Congestion Problem 161

Table 2. Numerical results of Instance 1 compared with Garg-Kénemann'’s algorithm
and Baltz-Srivastav’s heuristic

req.(# term.) G-K B-S Alg. 3 | Alg. 4
50(4) 2.5(5000) 2(50) 4(111) | 2(67)
) 4.4(10000)) | 7(207) | 3(180)
) 6.1(15000) 4(300) | 9(314) | 5(131)

200(4) 8.0(20000) | 5(400) | 11(594) | 6(260)
) 11.5(30000) | 7(900) |15(826) | 8(492)
) (

500(4 19.9(50000) | 12(1000) [23(1389)[13(977)
1000(4) 36.5(100000) |21(69000)|48(2786)[24(2955)
2000(4) 76.1(200000) | 44(4000) [96(5563)|54(3878)
500(> 2) 69.1(50000) | 32(4500) [39(1381)| 37(501)
1000(>2) |100.5(100000)| 65(3000) [78(2933)[72(1004)

in Algorithm 2, 3 and 4 MSTS is called only once in each iteration. In order
to compare the running time fairly, we count the number of calls to MS7TS as
the measurement of running time. In fact according to our implementation, the
running time of MS7S dominates the overall running time. From Table 1 it is
obvious that the heuristics improve the quality of solution much. Since the value
of 7 is too small in Algorithm 1, the iterate does not move after long time and
we manually terminate the program.

In [4] Instance 1 was implemented to test their heuristic based on an online
algorithm in [2] and a well-known approximation algorithm for packing problems
in [10] based on an approximation algorithm for the fractional multicommodity
flow problem. Here, we also use the same instances to test our Algorithm 3 and
4. The results are shown in Table 2. In the first column of Table 2 the num-
ber of requests and the number of terminals per request are given. The solution
delivered by the algorithms and heuristics are presented in other columns, to-
gether with the number of calls to MSTS in brackets. The results of Garg and
Koénemann’s algorithm are only for the LP relaxation.

It is clear that Algorithm 4 is superior to Algorithm 3 in the examples of
regular requests (with 4 terminals per request). Furthermore, it is worth noting
that our Algorithm 4 delivers better solutions than the algorithm by Garg and
Konemann [10] with much less number of calls to MSTS. In fact the fractional
solutions of Algorithm 3 are also better than those of the algorithm by Garg
and Koénemann. Our results are not as good as those of the heuristic proposed
in [4] for these instances. However, there is no performance guarantee of their
heuristic, while our solutions are always bounded by (1). A possible reason of this
case is that we use a 2-approximate block solver, which leads to a low accuracy.
We believe that a better approximate minimum Steiner tree solver and some
more strict stopping rules can result in better performance of our algorithm.

We also test our Algorithm 4 by Instances 2, 3 and 4, which are not im-
plemented in [4]. The results are listed in Table 3. Our algorithm can always
generate satisfactory solutions for these hard instances in short running times.

162 Q. Lu and H. Zhang

Table 3. Numerical results of Instance 2, 3 and 4

Inst.|# req.(# term.)| Alg. 4 |Inst.|# req.(# term.)| Alg. 4
2 50(>10) | 7(37) | 2 | 150(= 30) |25(116)
2 50(= 5) 6(41) | 2 | 200(= 10) |34(404)
2 100(>5) |12(33)] 2 | 200(>30) [32(148)
2 | 100(>10) |14(77)| 2 | 300(>10) |38(559)
2 | 150(= 10) |19(131)] 2 | 300(= 30) |47(231)
3 50(>5) | 2(146)| 3 | 200(>20) |13(320)
3 | 50(>20) |4(105)| 3 | 300(>5) |8(565)
3 [100(>5) | 4(90) | 3 | 300(>20) |19(285)
3| 100(=20) | 7(186)| 3 500(= 5) |13(962)
3 [200(>5) |6(210)] 3 | 500(=20) |30(483)
4 50(>5) |3(103)] 4 | 200(>20) |24(165)
1| 50(>20) | 7(36) | 4 | 300(=5) |14(560)
1] 100(>5) | 6(33) | 4 | 300(>20) |34(280)
1 100(>20) [13(86)| 4 | 500(=5) [24(475)
4| 200(>5) [10(173)] 4 | 500(=20) |56(390)

For any request of all these instances, the corresponding MS7TS is called at
most 3 times.

6 Conclusion

We have implemented the approximation algorithm for the multicast congestion
problem in communication networks in [14] based on [13] with some heuristics
to improve the quality of solution and reduce the running time. The numerical
results for hard instances are reported and are compared with the results of
the approximation algorithm in [10] and a heuristic in [4]. It shows that the
algorithm in [13] is practical and efficient for packing problems with a provably
good approximation ratio.

There could be some interesting techniques to further improve the exper-
imental performance of the algorithm. A possible method is to use a better
approximate minimum Steiner tree solver (e.g. the algorithm in [21]), though
the running time will be significantly increased. Another technique is to use
the line search for the step length to reduce the number of iterations. However,
the running time in each iteration increases so the improvement of the overall
running time could be not significant. More heuristics and techniques are to be
designed and implemented in our further work.

Acknowledgment

The authors thank Andreas Baltz for providing the data of testing instances.
We also thank Klaus Jansen for his helpful discussion.

Multicast Congestion Problem 163

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and
hardness of approximation problems, Journal of the ACM, 45 (1998), 501-555.

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, On-line routing of virtual
circuits with applications to load balancing and machine scheduling, Journal of the
Association for Computing Machinery, 44(3) (1997), 486-504.

A. Baltz and A. Srivastav, Fast approximation of multicast congestion, manuscript
(2001).

A. Baltz and A. Srivastav, Fast approximation of minimum multicast congestion
- implementation versus theory, Proceedings of the 5th Conference on Algorithms
and Complezity, CIAC 2003.

M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Infor-
mation Professing Letters, 32 (1989), 171-176.

R. Carr and S. Vempala, Randomized meta-rounding, Proceedings of the 32nd
ACM Symposium on the Theory of Computing, STOC 2000, 58-62.

S. Chen, O. Giinliikk and B. Yener, The multicast packing problem, IEEE/ACM
Transactions on Networking, 8 (3) (2000), 311-318.

M. Chlebik and J. Chlebikova, Approximation hardness of the Steiner tree problem,
Proceedings of the 8th Scandinavian Workshop on Algorithm Theory, SWAT 2002,
LNCS 2368, 170-179.

R. Floren, A note on “A faster approximation algorithm for the Steiner problem
in graphs”, Information Processing Letters, 38 (1991), 177-178.

N. Garg and J. Kénemann, Fast and simpler algorithms for multicommodity flow
and other fractional packing problems, Proceedings of the 89th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 1998, 300-309.

M. D. Grigoriadis and L. G. Khachiyan, Fast approximation schemes for convex
programs with many blocks and coupling constraints, SIAM Journal on Optimiza-
tion, 4 (1994), 86-107.

M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel price-
directive decomposition, Mathematics of Operations Research, 2 (1996), 321-340.
K. Jansen and H. Zhang, Approximation algorithms for general packing problems
with modified logarithmic potential function, Proceedings of the 2nd IFIP Inter-
national Conference on Theoretical Computer Science, TCS 2002, 255-266.

K. Jansen and H. Zhang, An approximation algorithm for the multicast congestion
problem via minimum Steiner trees, Proceedings of the 3rd International Work-
shop on Approxzimation and Randomized Algorithms in Communication Networks,
ARACNE 2002, 77-90.

R. M. Karp, Reducibility among combinatorial problems, in R. E. Miller and J.
W. Thatcher (Eds.), Complezity of Computer Computations, Plenum Press, NY,
(1972), 85-103.

P. Klein, S. Plotkin, C. Stein and E. Tardos, Faster approximation algorithms for
the unit capacity concurrent flow problem with applications to routing and finding
sparse cuts, SIAM Journal on Computing, 23 (1994), 466-487.

K. Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs,
Information Processing Letters, 27 (1988), 125-128.

C. A. S. Oliveira and P. M. Pardolos, A survey of combinatorial optimization
problems in multicast routing, Computers and Operations Research, 32 (2005),
1953-1981.

164

19.

20.

21.

22.

23.

24.

Q. Lu and H. Zhang

P. Raghavan, Probabilistic construction of deterministic algorithms: Approximat-
ing packing integer programs, Journal of Computer and System Science, 37 (1988),
130-143.

P. Raghavan and C. Thompson, Randomized rounding: a technique for provably
good algorithms and algorithmic proofs, Combinatorica, 7 (1987), 365-374.

G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs,
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, 770-779.

S. Vempala and B. Vécking, Approximating multicast congestion, Proceedings of
the tenth International Symposium on Algorithms and Computation, ISAAC 1999,
LNCS 1741, 367-372.

J. Villavicencio and M. D. Grigoriadis, Approximate structured optimization by
cyclic block-coordinate descent, Applied Mathematics and Parallel Computing, H.
Fisher et al. (Eds), Physica Verlag, (1996), 359-371.

J. Villavicencio and M. D. Grigoriadis, Approximate Lagrangian decomposition
with a modified Karmarkar logarithmic potential, Network Optimization, P. Parda-
los, D. W. Hearn and W. W. Hager (Eds.), Lecture Notes in Economics and Math-
ematical Systems 450, Springer-Verlag, Berlin, (1997), 471-485.

Frequency Assignment and Multicoloring Powers
of Square and Triangular Meshes

Mustapha Kchikech and Olivier Togni

LE2I, UMR CNRS,
Université de Bourgogne,
21078 Dijon Cedex, FRANCE
{kchikech, olivier.togni}@u-bourgogne.fr

Abstract. The static frequency assignment problem on cellular net-
works can be abstracted as a multicoloring problem on a weighted graph,
where each vertex of the graph is a base station in the network, and the
weight associated with each vertex represents the number of calls to
be served at the vertex. The edges of the graph model interference con-
straints for frequencies assigned to neighboring stations. In this paper, we
first propose an algorithm to multicolor any weighted planar graph with
at most %W colors, where W denotes the weighted clique number. Next,
we present a polynomial time approximation algorithm which garantees
at most 2W colors for multicoloring a power square mesh. Further, we
prove that the power triangular mesh is a subgraph of the power square
mesh. This means that it is possible to multicolor the power triangular
mesh with at most 2W colors, improving on the known upper bound of
4W. Finally, we show that any power toroidal mesh can be multicolored
with strictly less than 4W colors using a distributed algorithm.

Keywords: Graph multioloring; power graph; approximation algorithm;
distributed algorithm; frequency assignment, cellular networks.

1 Introduction

A cellular network covers a certain geographic area, which is divided into regions
called cells. Each cell contains a base station equipped with radio transceivers.
Users in a cell are served by a base station and cells can communicate with their
neighbors via radio transceivers. This communication consists in assigning a
frequency to each call in a manner that avoids interference between two distincts
calls. However, cellular networks use a fixed spectrum of radio frequencies and
the efficient shared utilisation of the limited available bandwidth is critical to the
viability and efficiency of the network. The static frequency assignment problem
with reuse distance d (also called interference constraints), therefore, consists
in designing an interference frequency allocation for a given network where the
number of calls per cell is known, and it is assumed that a frequency can be
reused without causing interference in two cells if the distance between them is
at least d. This forms the motivation for the problems studied in this paper.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 165-176, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

166 M. Kchikech and O. Togni

Cellular networks are often modeled as finite portions of the infinite triangular
mesh embedded in the plane. Vertices represent cells and edges correspond to
interference constraints for frequencies assigned to neighboring stations.

The frequency assignment problem described above is a multicoloring prob-
lem in the triangular mesh, and it can be abstracted as follows. Let G = (V, E)
be a finite undirected subgraph of the triangular mesh. Each vertex v € V has
an associated nonnegative integer weight, noted w(v). A multicoloring of G is an
assignment of sets of colors to the vertices such that each vertex v is assigned
a set of w(v) distinct colors, any pair of adjacent vertices u,v in G are assigned
disjoint sets of colors. Note that the weight of a vertex is the number of calls in
the corresponding cell and the assigned colors are the allocated frequencies. The
frequency assignment problem with reuse distance d = p + 1 is thus equivalent
to the problem of multicoloring the p** power of G.

There is a vast literature on algorithms for the multicoloring problem (also
known as weighted coloring [7] or w-coloring [9]) on graphs (especially triangu-
lar mesh) [3,4,5,6,7,9]. McDiarmid and Reed proved [7] that this problem is
NP-hard. Hence, it would be interesting to find algorithms that approximate
the number of colors used. But generally there are no proven bounds on the
approximation ratio of the proposed algorithms in terms of the number of colors
used in relationship to the weighted clique number. In this work, we give special
attention to some powers of the graphs with an embedding into the plane, in
particular square mesh and triangular mesh. Also, we study the multicoloring
problem on the power toroidal mesh.

In the next section, we present some definitions of basic terminology. In Sec-
tion 3, we describe an algorithm for multicoloring any planar graph in which
the number of colors used is within a factor % to the weighted clique number.
Our main results presented in Section 4 and in Section 5 concern the multicol-
oring the power square mesh and the power triangular mesh with an algorithm
using a number of colors at most 2 times the weighted clique number. Finally,
for multicoloring a power toroidal mesh, we propose in Section 6 a distributed
algorithm with guaranteed approximation ratio of 4.

2 Preliminaries

In this paper, we denote by G = (V, E) a finite and simple graph with vertex
set V' and edge set E. The length of a path between two vertices is the number
of edges on that path. The distance in G between two vertices u,v € V, noted
de(u,v), is the length of a shortest path between them. Given a positive integer
p, the pt" power GP of a graph G is a graph with the same set of vertices as G
and an edge between two vertices if and only if there is a path of length at most
p between them in G. A proper coloring of G is an assignment of colors to its
vertices such that no two adjacent vertices receive the same colors. The mini-
mum number of colors for which a coloring of G exists is called the chromatic
number and is denoted by x(G).

Frequency Assignment and Multicoloring Powers 167

Given a graph G, a weighted graph G, associated with G is a pair G, = (G, w)
where w is a weight function that assigns a non-negative integer to each vertex
v of G, w(v) is called the weight of v. A multicoloring of the weighted graph G,,
consists of a set of colors C and a function f that assigns to each v € V' a subset
of colors f(v) C C such that:

i) VeV, |f(v)] =w(), ie. the vertex v gets w(v) distinct colors.
ii) If (u,v) € E then f(u) N f(v) =0, i.e. two adjacent vertices get disjoint sets
of colors.

The weighted chromatic number, denoted x,,(G), of G, is the minimum num-
ber of colors needed to multicolor all vertices of G, so that conditions i) and
ii) above are satisfied. An algorithm is an a-approximation algorithm for the
multicoloring problem if the algorithm runs in polynomial time and it always
produces a solution that is within a factor of « of the optimal solution.

A subgraph K of G, is called a clique if every pair of vertices in K is con-
nected by an edge. The weight of any clique in G, is defined as the sum of the
weights of the vertices forming that clique. The weighted cligue number of G,
denoted W (for short, we will sometimes use W), is defined to be the maximum
over the weights of all cliques in G,,. Clearly, x.(G) > W.

3 Planar Graphs

The Frequency assignment problem on planar graphs have been studied in [1, 8.
In this section we consider the multicoloring problem on planar graphs. Before,
we present a result of Narayanan and Shende [9] showing that there exists an
efficient algorithm to optimally multicolor any outerplanar graph. A graph is
planar if it can be drawn in a plane without edge crossings. A graph is said to
be outerplanar if it is a planar graph so that all vertices may lie on the outer
face.

Theorem 1. ([9]) Let G be an arbitrary outerplanar graph, then its associated
weighted graph G, can be multicolored optimally using x.,(G) colors in linear
time.

Now, we consider the problem of computing an approximate multicoloring of an
arbitrary planar graph.

Theorem 2. Let G be a planar graph, then

Proof. Suppose that G is connected, since disconnected components of GG can be
multicolored independently. G is a planar graph of order n, then using the O(n?)
algorithm described by Robertson et al. in [11], we color G with 4 colors from
{1,2,3,4}. We call these colors base colors. We denote by s; any vertex s € Vi
which has color i € {1,2,3,4}, and by [1, z]; an interval of z (nonnegative integer)

168 M. Kchikech and O. Togni

distinct hues associated with base color i so that if ¢ # j then for every integers
z,y > 0, we have [1,z]; N [1,y]; = 0.
Let G,, be a weighted graph associated to G. W¢ denotes the weighted clique

number of G,,. We fix { = %WG (to simplify, we consider the case where Wg =
4
0 (mod3), otherwise the result will almost be same), and we let C = (J[1,¥);

=1
denote a set of available colors. Consider the multicoloring function f of G,
defined as follows:

f . VG — P(C)
si — f(s:) = [1,min(wg(si),0)):

where each vertex s; with weight we (s;) is assigned the hues of [1, min(wg(s;), £)];-
Note that a vertex v (with weight w(v)) is called heavy if w(v) > ¢ and is called
light if w(v) < £. Hence, only the heavy vertices remain to be completely colored
and their weights may be decreased by £. All light vertices are colored completely
and are deleted from G.

Let H = (Vy, Ey) denote the remaining graph obtained after this process.
Thus H is such that

—u € Vg e wg(u) >4,
— wg(u) = wg(u) — ¢,
— (u,v) € Eg = (u,v) € Eg.

It is easily seen that H has no clique of size 3. In fact, if (u1,us,us) is a tri-
angle in H, then these vertices must have been heavy in GG. Hence, there exist
positive integers €1, €2 and e3 such that wg(u1) = £+ €1, wa(uz) = £+ e
and wg(uz) = £+ €3. As wg(u1) + we(ug) +wa(uz) < Wg = 3¢, we obtain
€1 + 2 + €3 < 0 a contradiction. Consequently, every clique K in H has size at
most 2. Furthermore, if (u,v) € K then wy (u)+wp(v) = wa(u) —l+wg(v) —£ <
Wa — 2¢ = £. In addition, if u is an isolated vertex in H, then there exists a
positive integer e such that wg(u) = £+ ¢, and all neighbors of « must be light
vertices in G. Suppose that u has 4 for its base color and let IN; be the set of
all its neighbors having j # 4 for there base color in G. Let v; € N; such that
wa(vj) = max w(s). Further, we have wg(v;) = £ — &,;, with 0 <¢e,; < £. Then
J

u can borrow ¢,,; available colors from [1,/];, which are unused by all vertices
of Nj. As wg(u) + wg(v;) < Wg = 3¢, we get € — ¢, < £. For this reason, we
consider that each isolated vertex u € H has wy(u) = wg(u) — ({+ey,) = e—¢y,.
Thus, Wy < £ and we can therefore distinguish two cases

1. If H is a bipartite graph, then H can be multicolored optimally with exactly
Wi colors (see [4,7]). In this case, to avoid color conflicts, we use a new set
C’ of Wy distinct colors. Thus, multicoloring all vertices of G, requires at
most [C| + |C'| < 4+ ¢ = 3We colors.

2. If H is not a bipartite graph, then H is a planar graph without 3-cycles
(triangle-free). Then, using an O(nlogn) algorithm (See [12]) we color H with
at most 3 colors. Thus, there is an algorithm for multicoloring H that requires

Frequency Assignment and Multicoloring Powers 169

at most 2Wy colors [4]. Similarly, we use a new set C’ of 2Wy distinct colors.
Thus, multicoloring all vertices of G, requires at most |C|+ |C'| < 40+ 3¢ =
%WG colors.

4 pth Power of a Mesh

In this section, we denote by M, m = (Vim, Enm) the square mesh of order
nsm, and by MP = (VP EP) the p™ power of M, » such that:

n,m>

- VTﬁm:{(iaj)‘OSiSn—l;Ogjgm_1}7
- B = {((0), (£ L% 7)) € (VE,)* | 1< 147 <p}.

Suppose that M7 . is a weighted graph with weighted clique number W. For
the multicoloring of M}, , the method we use is based on a greedy algorithm.
In fact, in the beginning, we fix a set of W distinct colors. Next, according
to a preset order, each vertex w is multicolored in a greedy manner by as-
signing any colors currently unused by its neighbors. If the multicoloring of
u remains incomplete, we use new colors to complete it. This method prompts
Lemma 1.

Let H = (V, E) be a weighted graph and let « be a vertex of H such that
V = K; UKy U {z}, where K; and K> are two disjoint subsets and K; U {z}
and Ko U {x} are cliques in H (See Figure 1). We denote by w(K;) the weight
of K; with ¢« = 1,2, by w(x) the weight of 2 and by C the set of available
colors.

Lemma 1. Assume that all vertices of K1 U Ko are already multicolored us-
ing colors from C and assume that the vertex x is not yet multicolored, then
the total number of colors obtainable after multicoloring = is at most
maz(C], W + 1[c]).

Fig. 1. The graph H

170 M. Kchikech and O. Togni

Proof. Suppose that, for each i € {1,2}, K; U {z} is a clique in H. As W is
weighted clique number of H, we have

wz) +w(Ky) <W
{w(m) +w(K) <W (1)
(1) gives : X
w(z) W = S (w(K1) + w(K2)) (2)

Let S be the number of colors of C used only on the vertices of K7 or Ks. Let
D Dbe the number of colors of C used on both vertices of K; and Ks. Thus, we
get w(Kq) +w(Kz) =S+2D.

1. If all colors of C have been used i.e. |[C| = S + D, according to (2) we obtain
w(z) <W —2(S+2D) <W —1(S+ D) =W — 1|C|. Then, to multicolor
the vertex z without having a colors conflict, we use w(z) < W — 1|C| new
colors. Consequently, the total number of colors used is w(z)+[C| < W+ 3(C|
colors.

2. If |C| > S+ D, let A be the number of unused colors of |C|. If w(z) < A, we
can use some of these A colors to multicolor vertex x. In this case, the total
number of colors used cannot exceeds |C|. If w(z) > A, we assign A colors to
vertex - and we consider that the new weight of vertex z is w(x) — A, thus
we are in the previous case.

Theorem 3. For any p > 2, there exists a polynomial time greedy algorithm
which multicolors all vertices of the weighted p*™ power square mesh using at
most 2W colors.

Proof. Let MP ., be the p" power square mesh as defined previously. In what
follows, let w;; denote the weight of vertex (7,j) and Cy denote a set of colors
with |Co| =

Consider Py = {(i,j) € VP, |i+j = N}, asubset of V[P, . We observe that
n+m—2
VPin= U Pn.
N=0
The idea of the proof is to multicolor each subset Py starting from Py to
Prtm—2. At each stage IV, we multicolor in a greedy manner the vertices of Py
using Lemma 1. In fact,

- For N = 0, let Cy be the set of available colors. It is easy to see that Py =
{(0,0)} and we can multicolor the vertex (0,0) with wgg colors from Cy.

- For N =1, we also consider Cy as the set of available colors. We have P; =
{(1,0),(0,1)}. As (0,0), (1,0) and (0,1) belong to the same clique, we can
easily multicolor the vertices (1,0) and (0,1) with colors from Cy without
having any conflict.

- At stage N, let (i,5) € Py be a vertex not yet multicolored and let C be the
set of available colors. We suppose that all vertices of Py/ (with N’ < N)

Frequency Assignment and Multicoloring Powers 171

and the vertices (i +r,j —r) € Py with 1 < r < min(N —i — 1,5) are
already multicolored and use colors from C. Let K;; be the subset of VP
that contains part of these vertices which are at distance less than or equal
to p from vertex (4, j) in My, .. The goal is to partition K;; into two cliques
Kilj and Kfj and applying Lemma 1 (See Figure 2).

Now, we are going to show that

Kij={(i+rj—-0)eVP |r+1<p;0<r<lI}
U{li—rj—) eVl lr+l<p;l<r<p;0<i<p}
U{(i—rj+D)eVpP [r+l<p;1<i<r}

Let (i',7') € Kjj, it is easy to see that day, .. ((4,7), (i',5")) < p.
In addition, we have

i+j—(—r)ifo<r<i;
i+ =i+i—(U+r),1<r0<I; (3)
i+j—(r=10),1<li<r.

If N' = 4 4 j' then, (3) gives us N’ < N, because N = i + j. How-
ever, we have i’/ + j/ = N only if i/ =i+ r and j/ = j —r with r < j.
Hence, according to the above assumption, we have that (i, ;') is already
multicolored.

Reciprocally, consider (i £ r,j £ 1), with r,l > 0, a vertex of V! al-
ready multicolored such that dyy, ,,((¢,7), (i & r,j & 1)) < p. That means
r+1 < p and there exists N’ < N such that (i £ r,j £1) € Pys. So,
itr+j5+£1 < N = ¢+ j this gives r < [or [< r. Hence,
(Z:l:T’,j:l:l) EKl'j.

Moreover, we can partition K;; into two cliques K}j and Kfj where:

KL ={(i+ri-D1<r+1<p;0<r <BU{li—rj-D|r+1<
p;1 <r<l}

K ={(—rj-D1<r+1<p;0<i<ryu{(i—rj+l),|r+1<
p;1<l<r}

Finally, by applying Lemma 1, we multicolor (4,5) and the total number of
colors used until this stage is maz(|C|, W +1[C|). Then, it is clear that 2W colors
are sufficient for multicoloring all vertices of MF

In fact, the algorithm of the above proof can be applied to every subgraph of
the power square mesh.

Proposition 1. For any subgraph G of the weighted square mesh, there exists
a polynomial time greedy algorithm which multicolors all vertices of G using at
most 2W colors.

Proof. The proof is similar to that of Theorem 3, because, keeping the same
order on the vertices, when we multicolor vertex (i, j) of G, the set of neighbors
of (4,7) which are already multicolored can be partitioned in two cliques. Thus
the same algorithm used in proof of Theorem 3 gives the result.

172 M. Kchikech and O. Togni

PO Pl P2 P? P4 P 5

p v
]
,
A /
A R
(\ .
VAT
)
(1 %9)]
\ J 2
.
l

ot
7

i

Fig. 2. The multicoloring of graph M3

5 pt" Power of a Triangular Mesh

We define a triangular mesh as a mesh formed by tiling the plane regularly with
equilateral triangles (See Figure 3). The multicoloring problem on a weighted
triangular mesh has been extensively studied and proved to be NP-hard by
Mcdiarmid and Reed [7]. If the triangular mesh considered is of power p > 2
then the problem models frequency allocation in cellular networks with reuse
distance d, where d = p — 1. Some authors independently gave approximation
algorithms for this problem. In case where d = 2, a %—approximation algorithm
has been described both in [7,9]. For d = 3, [3] gives a simple algorithm that
has a guaranteed approximation ratio of % For d > 4, the best known upper
bound on the number of colors needed is 4W [6]. In contrast, the best known
lower bound on the number of colors needed is %W if d =21[9] and is 2W if
d >3 [10].

In the following, we present an improvement of the upper bound of 4W
by showing that for the p!* power triangular mesh noted HP, there exists a
polynomial time algorithm that multicolors all vertices of HP using at most 2W
colors. The method used is based on the multicoloring of the p*" power mesh.

Fig. 3. A triangular mesh

Frequency Assignment and Multicoloring Powers 173

Fig. 4. A triangular mesh induced in the 4" power of a mesh

Theorem 4. H? is a subgraph of M*?, where M*? is the (4p) ™" power of a
mesh.

Proof. Let M = (V, E) be an arbitrary square mesh, and let M? = (VP EP) be
the p*" power of M.

We fix p = 4. We know that there exists a pair of integers (q,r) such that
n+m—2=4q+r where 0 <r < 4.

q
Let Vé = |J Pux be a vertex subset of V4, where for 0 < k < ¢ we have:
k=0

- Par = {(2i,27) € V*| i+ j = 2k} when k is even.
- Py ={(2i +1,2j+1) € V*| i+ j = 2k — 1} when k is odd.

Consider v,v" € V3 two adjacent vertices in M* (i.e. dps(v,v) < 4). Thus, there
exist k, k' € {0,1,...,¢q} such that v € Py and v' € Pyy.

Without loss of generality, we assume that k is even. Then there exists (i, j) such
that v = (2i,25) € V* and i + j = 2k.

case 1: k" is even. Then, there exists (i’,j’) such that v' = (24,2;') € V* and
i+ =2k As dy(v,v') < 4, we get [2(7 —1)| + |2(j' — j)| < 4. Moreover,
120" — i) +2(5" — j)| < |2(# = 9)| + |2(5" — §)| < 4, this gives [4(K' — k)| < 4.
As k and k' are even we obtain k = k/. Then, ¢/ —i = j — j' so |’ —i] < 1.
Thus, ¢ =4 or ¢ =4 £ 1. If ¢ = i’ we obtain v = v/, but if i = ¢/ &= 1 we obtain
V= (20 +2,2j —2) or v/ = (2i — 2,2j +2).

case 2: k' is odd. Then, there exists (i’,5’) such that v/ = (2i’ + 1,25’ +1) € V*
and i’ + 5" = 2k — 1. dps(v,v") < 4 implies that [2(¢' —2) + 1|+ [2(j' —j) + 1] < 4.
As |2(¢" —=i)+2(5 —5)+2| < |2(¢ —i)+1|+|2(j —) +1]|, we obtain |4(k' — k)| < 4.
So, k' = k £ 1 because they are of different parity.

If ¥ = k41, then ' —i = j — j' + 1. So, the inequality |2(¢' —4) + 1| + |2(j' —
J)+1| <4gives j —j < % orj'—j < 3. Hence, we obtain j/ = j or j' = j+ 1.

174 M. Kchikech and O. Togni

Therefore, v/ = (2i + 3,25 + 1) or v/ = (2i + 1,25 + 3). In the same way if we
take k' =k — 1, we obtain v = (2i — 3,25 — 1) or v/ = (2i — 1,25 — 3).

Thanks to the above, we see that each inner vertex v € Py with k is even
has exactly six neighbors and they form a hexagon, and the same holds when &
is odd.

Consequently, we define H' to be the subgraph of M* induced by V}. It is
clear that H'! is a triangular mesh (See Figure 4).

In addition, we remark that the distance in M between two adjacent vertices
of H' is 4. Thus, we easily verify that for any p > 1, the p" power of the trian-
gular mesh HP is a subgraph of the (4p) ‘" power of the mesh M?P.

Corollary 1. There exists a polynomial time greedy algorithm which multi-
color all vertices of the weighted p** of a triangular mesh HP using at most
2W colors.

6 p!" Power of a Toroidal Mesh

Let G = (V, E) be an arbitrary graph and let s be a vertex of G. We denote by
N (s) the neighborhood of vertex s.

Definition 1. A connected graph G = (V, E) has Property (Py) iff for any ver-
tex s, the set N(s)U{s} can be covered with k distinct cliques each containing s.

With the above definition, we provide the following theorem, where the proof
is based on an idea given in [3].

Theorem 5. If G is a weighted connected graph verifying Property (Py) then
Xw(G) < 4AW.

Proof. Let G = (V, E) be a connected graph verifying Property (Py). Consider
a proper coloring of G with k colors. We associate with each base color ¢ dis-
tinct hues, where /¢ is a constant to be determined later. Thus, we obtain k - £
available colors. Now, we assign each vertex s € V w(s) colors in the interval
[1, min(w(s),)] of colors associated to the base color of s. Then, we note that the
heavy vertices (with weight larger than ¢) are not completely colored. In order to
complete the coloring of the heavy vertices, we proceed in the following manner.
First, we consider a heavy vertex s not yet completely colored and let N(s) be
the vertex subset of V' adjacent with s. As G verifies Property (Py), N(s) can
be covered with four cliques, each of them containing s. Assume that W is the
weighted clique number. Then each clique has weight at most W. Thus, the total
weight of N(s) is at most w(s) +4(W —w(s)) = 4W —3w(s) < 4W — 3¢ because
s is a heavy vertex. In order for k- ¢ colors to be sufficient to color all vertices of
N(s) we must have 4W — 3¢ = k - £. This gives 4W = (3 + k){. So, { = ﬁw.
Thus, we are able to color all vertices of G using at most k - £ = ;TkkW < AW
colors.

Now, we consider the p** power toroidal mesh Mp ., = (VP EP) of order
n * m where:

Frequency Assignment and Multicoloring Powers 175

\ -
KiJ

Fig.5. The graph M3 and the vertex subset V(f.w covered by 4 cliques Kilj, Kfj,
K, K}

7 ij

- VP ={(,j)|0<i<n—-10<j<m-—1}.
- EP ={((i,5),i £l mod n ,j+r mod m))| 1 <l+r <p}

Let W be the weighted clique number of MY .
Using Theorem 5, we show in the following theorem that the weighted chro-
matic number of the p*"* power of a toroidal mesh MP . does not exceed 4W'.

Theorem 6. There exists a polynomial time algorithm which multicolors any
vertices of the weighted p*" power toroidal mesh of order nxm if p<min([2], [2])
using at most 4W colors.

Proof. For the proof, with Theorem 5, we only have to show that M? = (VP EP)
verifies Property (Py).

Let s = (4,7) be a vertex of VP, and let VP = N(s)U{s} be the vertex subset
of VP which contains all vertices of VP at distance less or equal to p from s.
Now, we construct four subsets of V? defined as follow:

- KL ={(iEtri-0)eVP|0<r+I1<p;0<r<lI}.

- Kfj:{(i—l—r,jil)eVSp|0§r+l§p;OSl§r}_
- Ky =A{(Erj+)eve0<r+lspOsr<i}
- Ky ={li-rj k) eVI|0<rHlsposi<r)

It is easy to see that each subset Kfj with [€ {1,2,3,4} is a clique in M}, and
VP = KUK} UK} UK} ie. VP is covered by these 4 cliques (See Figure 5).
Then, M} . verifies Property (P).

7 Conclusions

In this work, we have studied the problem of frequency assignment in cellular
networks with reuse distance d as a multicoloring problem on powers of graphs.

176 M. Kchikech and O. Togni

We proposed some techniques of multicoloring based on approximation and dis-
tributed algorithms, and we provided some approximation ratios in terms of the
number of colors used in relationship to the weighted clique number, denoted
by W. For a planar graph, we have shown that %W colors are sufficient to
multicolor it. For the power square mesh and triangular mesh, we described a
greedy multicoloring algorithm that uses at most 2W colors. We also presented
a distributed algorithm for multicoloring a toroidal mesh using at most 4W col-
ors. It would be interesting to see if the algorithm proposed in Section 4 can
be improved to have an approximation ratio less than 2, and can be adapted to
every power n-dimensional mesh and every power planar graph.

Acknowledgments

We wish to thank the anonymous referees for many useful comments and refer-
ences.

References

1. M. I. Andreou, S. E. Nikoletseas, P. G. Spirakis. Algorithms and Experiments on
Colouring Squares of Planar Graphs. In Proc. of the 2nd International Workshop
on Ezperimental and Efficient Algorithms (WEA 2003), LNCS 2647, Springer,
15-32, 2003.

2. L. Caragiannis, C. Kaklamanis, E. Papaioannou. Efficient On-Line Frequency Al-
location and Call Control in Cellular Networks. In Proc. Theory of Computing
Systems, 35(5):521-543, 2002.

3. T. Feder and S.M. Shende. Online channel allocation in FDMA networks with
reuse constraints. Inform. Process. Lett., 67(6):295-302, 1998.

4. J. Janssen, K. Kilakos and O. Marcotte. Fixed preference frequency allocation for
cellular telephone systems. IEEE Transactions on Vehicular Technology, 48(2):533-
541, March 1999.

5. J. Janssen, D. Krizanc, L. Narayanan, et S. Shende. Distributed On—Line Fre-
quency Assignment in Cellular Networks. Journal of Algorithms, 36(2):119-151,
2000.

6. S. Jordan and E.J. Schwabe. Worst-case preference of cellular channel assignment
policies. Wireless networks, 2:265-275, 1996.

7. C. McDiarmid and B. Reed. Channel Assignment and Weighted coloring. Networks,
36:114-117, 2000.

8. M. Molloy, M. R. Salavatipour. Frequency Channel Assignment on Planar Net-
works. In Proc. of the 10th Annual European Symposium (ESA 2002), LNCS 2461,
Springer, 736-747, 2002.

9. L. Narayanan, and S.M. Shende. Static Frequency Assignment In Cellular Net-
works. Algoritmica, 29, 396-409, 2001.

10. L. Narayanan, and Y. Tang. Worst-case analysis of a dynamic channel assignment
strategy. Discrete Applied Mathematics, 140:115-141, 2004.

11. N. Robertson , D. Sanders , P. Seymour et R. Thomas. The four-colour theorem.
Journal of Combinatorial Theory, 70(1):2-44, 1997.

12. M. R. Salavatipour. The Three color problem for planar graphs. Technical Report
CSRG-458, Department of Computer Science, University of Toronto, 2002.

From Static Code Distribution to More
Shrinkage for the Multiterminal Cut

Bram De Wachter*, Alexandre Genon*, and Thierry Massart

Université Libre de Bruxelles,
Département d’Informatique,
Bld du Triomphe, B-1050 Bruxelles
{bdewacht, agenon, tmassart}@ulb.ac.be

Abstract. We present the problem of statically distributing instructions
of a common programming language, a problem which we prove equiv-
alent to the multiterminal cut problem. We design efficient shrinkage
techniques which allow to reduce the size of an instance in such a way
that optimal solutions are preserved. We design and evaluate a fast local
heuristics that yields remarkably good results compared to a well known
2— % approximation algorithm. The use of the shrinkage criterion allows
us to increase the size of the instances solved exactly, or to augments the
precision of any particular heuristics.

1 Introduction

We present the problem of automatic distribution of a programming language,
motivated by our research in automatic distributed industrial control systems
[17]. This problem consists in distributing a program code among different
sites, minimizing the total communications between these sites during its ex-
ecution. We show that this problem is NP-hard. Furthermore, we show that
it is equivalent to the multiterminal cut presented in [7], and therefore con-
centrate on finding new ways to attack the problem described in terms of
multiterminal cut.

The key concept used in this paper is based on shrinkage, a notion presented
by Dahlhaus et al. in [7] where an instance I is transformed into a smaller
instance I’ in such a way that all optimal solutions in I’ can be easily transformed
into optimal solutions for I.

In this paper, we generalize the shrinkage criterion of Dahlhaus et al. which
is based on st cuts, to all nodes in the instance graph and prove its correctness.
Then, we present an implementation of a fast local heuristics taking advantage
of this new shrinkage operation. The heuristics combines both the new shrinkage
based reduction and an unshackle operation which operates on graphs where no
more shrinkage is possible.

We also introduce mazimum size minimum st cuts, and prove (theorems 5,
6 and 7) some unexpected properties on the structure of these cuts. We ex-
ploit these results to obtain a more efficient implementation for our shrinkage

* Work supported by the Region de Bruzelles Capitale, grant no. RBC-BR 227/3298.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 177-188, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

178 B. De Wachter, A. Genon, and T. Massart

algorithm, and prove (theorem 8) that the procedure of Goldberg and Tarjan,
presented in [10] for max-flow/min-cut actually computes these cuts. A practical
evaluation is presented showing that our heuristics yields generally better results
than the approximation algorithm designed by Dahlhaus et al. To the best of
our knowledge, we perform the first experimental study of the approximation
algorithm of [7].

2 Optimal Static Code Distribution Is Hard

Our problem consists in finding, at compile time, an optimal distribution of an
imperative regular program. Such a program contains instructions (assignments,
loops and tests), a set of static global internal variables and a set of static global
I/0O variables. The distributed environment in which the program runs is com-
posed of several sites, each of which contains some of the global I/O variables. A
correct distribution is an assignment of all variables and all instructions to the
set of sites such that the following distribution constraints are satisfied : (1) the
I/O variables are on the predefined sites, (2) each variable and instruction is
on exactly one site, (3) each instruction using a variable is on the site of that
variable.

The assignment of instructions to sites influences the performance of the pro-
gram during execution: each time control flows from an instruction assigned to
one site to an instruction assigned to another site, the executed distribution en-
vironment must synchronize (e.g. by sending a message over a network) in order
to continue the execution on the other site. The optimal distribution is such that
the expected number of (synchronization) messages exchanged during execution
is minimum. In order to evaluate this performance criterion, we suppose that
a realistic control flow frequency function W is given, expressing the expected
number of times control flows from one instruction to another.

x=1;

while (y<k) { // k times
if (z>2) w=1; // 1/2
else x=3; // 1/2
s=0;
y+t;

}

q=2;

I/0 q : sitel;

I/0 s : site2;

(a)

Fig. 1. The distribution problem

From Static Code Distribution to More Shrinkage 179

A graphical presentation of the optimal distribution problem can be found
in figure 1. The program of figure 1(a) can be graphically modeled by its control
flow graph (figure 1(b)) where the nodes are its instructions and edges model
the control flow between instructions with weights defined by W. The graph of
figure 1(c) is the undirected graph where all nodes using the same variables are
merged. We say that this graph is the result of the merging of x=1 and x=3 and
of the merging of y>k and y++ in the first graph. More formally, when two nodes
n and n’ are merged, n and n’ are replaced by one new node n”, and all edges
{v,n} and {u,n'} are changed to {v,n”} and {u,n”}. Note that when more
than one edge exists between two nodes, all of the edges between those nodes
can be replaced by a single edge weighted by the sum of the weights of these
edges. Remark that both representations of figure 1 are equivalent with respect
to the optimal distribution problem. The merging operation is sometimes called
contraction if an edge exists between two merged nodes, since that edge would
disappear from the graph. We now give a formal definition of the multiterminal
cut problem on weighted undirected graphs.

Definition 1 (Multiterminal cut problem). Given a weighted undirected
graph G(V,E,w) : E C {{u,v}lu,v € VAu#v} ', w:E— N and a set of
terminals T = {s1,...,sx} C V, find a partition of V into Vi,..., Vi such that
si € Vi Vi€ [Lk] and }_ v, ey, iz w(v, V) is minimized.

We know that the multiterminal cut problem is NP-Hard [7] for fixed & > 2,
even when all weights are equal to 1. As shown in [1], optimal distribution is an
NpP-hard problem. The following theorems, proved in [1], state that the optimal
distribution problem and the multiterminal cut are equivalent.

Theorem 1. There exists a polynomial time reduction from the optimal distri-
bution problem to the multiterminal cut.

Theorem 2. There exists a polynomial time reduction from multiterminal cut
on unweighted graphs to the optimal distribution problem.

With these two theorems, we can conclude that the optimal distribution
problem is polynomially equivalent to the multiterminal cut. Thus, to solve the
optimal distribution problem, we can concentrate on the multiterminal cut in
the program’s control flow graph.

3 Related Works

The multiterminal cut problem has first been studied by Dahlhaus et al. in [7].
In this paper, the authors prove that this problem is NP-hard for k£ > 2 even
when k is fixed where k is the number of terminals. The problem is polyno-
mially solvable when & = 2, a well known result proved by Ford and Fulker-

son [8], and in the case of planar graphs. The authors also present a 2 — %

! For technical reasons looping edges (v,v) will be omitted in all graphs considered
here.Note that their presence does not change the problem.

180 B. De Wachter, A. Genon, and T. Massart

polynomial time approximation algorithm that relies on isolating cuts, a tech-
nique that is detailed further on. Moreover, they proved that this problem is
MAX SNP-hard, i.e. there is no polynomial time approximation scheme un-
less P=NP. In [2], Calinescu, Karloff, and Rabani, presented a linear program-
ming relaxation. Using this technique and a well chosen rounding procedure,
they obtain an approximation factor of 1.5 — % This factor was lowered to
1.3438 by Karger et al. in [13] who give better approximations when k > 14.
These improvements were found by studying carefully the integrality gap and
giving a more precise rounding procedure. A polyhedral approach [3,15,5] and
a non-linear formulation [6] have also been studied for the multiterminal cut
problem.

Shrinkage has also been studied by Hégstedt and Kimelman in [11]. In this pa-
per, the authors give some optimality-preserving heuristics that allow to reduce
the size of the input graph by contracting some edges. The shrinkage technique
presented here generalizes some of their criteria (such as independent nets and
articulation points).

In this paper, we consider the multiterminal cut problem on undirected
graphs, but work has also been done on directed graphs. Naor and Zosin pre-
sented a 2-approximation algorithm for this problem in [14]. On the other hand,
Costa, Letocart and Roupin proved in [4] that multiterminal cuts on acyclic
graphs could be computed in polynomial time using a simple flow algorithm. A
generalization of multiterminal cut is minimum multicut where a list of pairs of
terminals is given and we must find a set of edges such that these pairs of ter-
minals are disconnected. Garg et al. [9] give a O(log k)-approximation algorithm
for this minimum multicut. A survey on multiterminal cuts and its variations
can be found in [4].

The applications that rely on the multiterminal cut fall mainly into two do-
mains : the domain of parallel computation and the partitioning of distributed
applications. The problems encountered in parallel computation are concerned
with the allocation of tasks on different processors. The total load must be
partitioned in roughly equal sized pieces, characterized by some load balanc-
ing criterion, and this subject to some interconnection criterion that must be
minimized ([12] and [16]). These problems can be formulated using the strongly
related k-cut problem, which asks to partition the graph in k subsets such that
crossing edges are minimized. Since this problem has no fixed terminals, it is
polynomially solvable, for any fixed k > 3 [7] and is thus considerably easier
than the problem addressed here.

For the distributed applications, the problem is similar, only that it is the
several application’s components that must be distributed among different pro-
cessors. Several criteria are studied, such as the inter object communication load
of [11]. However, we are not aware of other works that are based on the static
distribution of the instructions where the control flow is used to minimize the
expected communications load. Because of this fine grain distribution, the scale
of our problem is considerably larger than the studies on the partitioning of
objects or functions as is the case in classical distributed systems. Therefore, we
believe that the results of the heuristics presented here are applicable on these
smaller instances as well.

From Static Code Distribution to More Shrinkage 181

4 A Generalized Global Criterion

In [7] the authors design a 2 — £ approximation algorithm based on the isolation
heuristics which uses st cuts. An st cut (multiterminal cut with k& = 2) divides
the graph into two sets (C,C) where s € C and t € C. The heuristics consists
in finding an optimal isolating cut for each of the k terminals {s1,...,s;} and
taking the union of the £ — 1 smallest of these cuts. An optimal isolating cut is a
minimum st cut where s=s; and t is the node resulting of the merging of s;;.
We now introduce the original shrinkage theorem proved by Dahlhaus et al :

Theorem 3 (Shrinkage). Given graph G(V,E,w) with terminals T = {s1,
Skt C V. Let G be the graph where all terminals in T \ {s;} are merged

into t, and (C, 6) the st cut between s; and t, then there exists an optimal
multiterminal cut (Vi,..., Vi) of G such that 3¢ : C C V.

Theorem 3 allows us to shrink (i.e. to merge) all nodes in C' into one node.
Shrinkage is clearly an interesting way to attack the multiterminal cut problem.
Indeed, we can apply theorem 3 to all terminal nodes in order to shrink the graph.
And if one can obtain a relatively small instance, then there may be hope to
find the optimal solution by exhaustive search. It can also be used independently
of any other algorithm designed to approximate the multiterminal cut problem.
We extend theorem 3 to handle more shrinkage as follows :

Theorem 4 (More shrinkage). Given graph G(V, E,w) with terminals T =
{$1,-.,sk} CV. Let v € V, and G, be the graph where all terminals in T \ {v}
are merged into t, and (C,C) the minimum st cut between v and t in G’ then
there exists an optimal multiterminal cut of G (V1, ..., Vi) such that 3¢ : C C V.

Proof. Outline (a detailed proof can be found in [1]). Figure 2 illustrates the
proof for [= 1. Proof by contradiction. Take any minimum multiterminal cut
C* = (V1, Vs, ..., Vi) and suppose that v € V; but C € V;. Take c* = (hu
C,Vo\ C,..., Vi \ C). Then we can show that the weight of C* < the weight of
C* by using the weights of the edges between C' and C and between C' NV, and
C' NV :since (C,C) is a minimum st cut, the border of V; can be extended to
V1 U C without increasing the multiterminal cut’s weight.]

Theorem 3 differs from this theorem because we can apply the former only
on terminal nodes, while the latter can be applied to all nodes in the graph,
resulting in more shrinkage and therefore smaller graphs.

Fig. 2. Theorem 4

182 B. De Wachter, A. Genon, and T. Massart

We now explain how to use theorem 4 to shrink an instance of the multiter-
minal cut problem. Let s € V, we compute the st cut were ¢ is the result of
the merging of all terminals in 7"\ s. The nodes that are in the same partition
as s are merged together, with theorem 4 assuring that this preserves opimal-
ity. A chain of graphs G, ..., G; can therefore be calculated where each graph
is the result of the optimal merging with respect to its predecessor, and where
G can not be reduced any further. To compute these st cuts, one can use the
algorithm of Goldberg and Tarjan [10], with complexity O(nmlog %) (where
n = |V|],m = |E|). With the results contained in the next section, we can show
that when this well known algorithm is used, then [< n, resulting in a total
complexity in O(n?m log %2)

Once a graph cannot be reduced any further, two options remain, either
search exhaustively and find an optimal solution, or unshackle the graph. Un-
shackling means contracting one or more edges that likely connect nodes from
the same partition in the optimal cut. Note that if an edge is picked that
is in every optimal multiterminal cut, this operation will not preserve opti-
mality. Once the graph is unshackled, the resulting graph may be ready for
further optimal reductions. In the following section, we study an implemen-
tation using the shrinkage technique combined with a fast local unshackling
heuristics.

5 A Fast Local Heuristics

As said in previous section, we can use the shrinkage technique in combination
with an unshackling heuristics. Figure 3 gives a graphical overview of this tech-
nique and figure 4 presents an implementation. We first perform shrinkage until
the graph cannot be reduced any further. Then, we use an unshackling heuristics
to contract one edge from this graph. The shrinkage technique may thereupon
be reused on this unshackled graph. This process is repeated until the graph
contains only terminal nodes. While the resulting multiterminal cut may not be
optimal, due to the unshackling heuristics, we will see that this technique gen-
erally computes a fairly good multiterminal cut and is quite efficient, provided
that the unshackling is easy to compute.

’ e

NON

Theorem 4

w Transformation
a9

N

Fig. 3. Optimal and non optimal reductions

5.1 Definition and Complexity

Definition 2 (MAX-MIN-st cut). Given graph G(V,E, w) and two different
nodes s,t € V. Define min-ST(s,t) as the set of cuts separating s and t with

From Static Code Distribution to More Shrinkage 183

reduce() ;

while(non-terminals exist) {
unshackle(); // Contract 1 edge
reduce() ;

Fig. 4. Unshackling heuristics

minimum weight. We define the set MAX-MIN-st (s,t) as the set of nodes left
connected to s by the cut (C,C) € min-ST(s,t) such that |C| is mazimal. We
can easily extend these definitions for sets of nodes. For a set T, MAX-MIN-st
(s,T) is equivalent to MAX-MIN-st (s,t) in the graph G where all nodes in T
have been merged into the new node t.

We now prove some interesting properties related to maximum size minimum
cuts. Theorems 5, 6 and 7 give some remarkable insights on the structure of these
cuts, which leads to a more efficient implementation of our heuristics. We use

the following notation : o o
w(A, B) = 3 (2 weayeny W y), and let w(X) = w(X, X), where X = V\ X.

Theorem 5. Given graph G(V, E,w) and two nodes s,t € V,
MAX-MIN-st(s,t) is uniquely defined, i.e. there is only one maximal size mini-
mum st cut for any couple (s,t).

Proof. Outline (a full proof can be found in [1]). By contradiction : suppose
S and S’(S # S') both satisfy the definition of MAX-MIN-st(s,t). Let I =
SNS andT =V \ (SUS’), it is easy to see that S (resp. S’) # I, else S
(resp. S”) would not be a maximal size minimum st cut. First, since S is a min
st cut we start from w(I) > w(S) to prove that w(S\ I,I) > w(S\ I,T).
Next, we compute w(S U S’), note that S U S is also an st cut for (s,?).
We show that w(S US) = w(S\ I,T) + w(S,T) < w(S’). Finally, observe
that S U S is therefore a minimum st cut for (s,t) with larger cardinality
than S or S’ [|

Theorem 6. For any three nodes s,s',t of V, if s € MAX-MIN-st(s,t), then
MAX-MIN-st (s',t) C MAX-MIN-st (s,t).

Proof. By contradiction : let S = MAX-MIN-st(s,t), S’ = MAX-MIN-st(s’,¢) and
suppose that S ¢ S. We have that [SUS'| > |S]. Let I = SNS" and T =
V\ (SUS’), we define the following :

A=w(S\I,T) B=w(l,T) C=w(S'"\I,T)
D=w(,S\I) E=w(,8\I) F=w(S\L5\I)
w(SUS)=A+B+C w(S)=A+B+E+F
w(S)Y)=B+C+D+F w({l)=B+D+FE

From the definition of S and S’ we have w(SUS’) > w(S) (as S € SUS’) and

w(I) > w(S"), which implies that C' > E + F and E > C + F. This leads to a
contradiction. [

184 B. De Wachter, A. Genon, and T. Massart

Theorem 7. Given graph G(V, E,w) and three distinct nodes s,s',t € V. Let
S = MAX-MIN-st(s,t), S’ = MAX-MIN-st(s',t), I = SNS', and T = V \
(SUS). IfI # 0 and S # I and S’ # I, then w(I,S\I) = w(I,5" \ I).
Moreover, we have that w(I,V \ (SUS")) = 0. The same results hold when S =
MAX-MIN-st(s, {tUs’}), S" = MAX-MIN-st(s’,t) or S = MAX-MIN-st(s, {tUs'}),
S’ = MAX-MIN-st (s, {s U t}).

Proof. By contradiction : let’s reuse the equations from proof of theorem 6, to
compute w(S \ I) and w(S) :

wS\I)=A+D+F w(S)=A+B+E+F

As S is the MAX-MIN-st cut(s,t), we have A+ B+ E4+ F < A+ D+ F
and B+ E < D. By applying a similar reasoning with S’ and S’ \ I, we
can prove that B+ D < E. In conclusion, we have F = D(= w(I,S\I) =
w(I,S" \ 1)) and B(= w(I,T)) = 0. The two other propositions are
proved likewise. |

Theorems 5, 6 and 7 allow us to efficiently calculate the reduction phases of
our unshackling heuristics. We know that the order in which we calculate the cuts
has no effect on the outcome of the algorithm. Moreover, we can calculate the
MAX-MIN-st cut for a given node n and immediately merge all nodes on the same
side of n in the cut, thus reducing the number of nodes before calculating the
next MAX-MIN-st cut for the remaining unmodified nodes. After the calculation
and merging of all MAX-MIN-st cuts, we have for all nodes in the reduced graph
and terminals sy, ..., Sk, MAX-MIN-st cut (s,U;s; \ {s}) = {s}. The only missing
link is how to calculate MAX-MIN-st:

Theorem 8. The algorithm of Goldberg and Tarjan [10] calculating the mazi-
mum flow in O(nm log(%j))—time also calculates MAX-MIN-st

Proof. By contradiction. As for prerequisites, the reader is expected to be famil-
iar with [10], where the authors prove that it is possible to calculate a minimum
st cut (S,,5,) with s € S, At € S, in O(nm log("%))—time. We will use their
notations to prove that the min st cut calculated by their algorithm is in fact
the unique minimum st cut of maximal size.

Let g(v,w) : E — R be the preflow function (here we may suppose that the
algorithm terminated and that the preflow is a legal flow). G is used to indicate
the residual graph and c(v,w) : E +— RT indicates the capacities of the edges in
E. In addition, (S,,S,) is defined as the partition of V such that S, contains
all nodes from which ¢ is reachable in G, and S, =V \ S,,.

We use the following lemma by Golberg and Tarjan from [10]:

When the first stage terminates, (Sq,S,) is a cut such that every pair
v,w with v € Sy and w € S, satisfies g(v,w) = c(v, w).

Suppose that there exists another minimum cut (C’,C’) such that |C’| > |S,]
which is maximal in size.

Remark that S; C C” because of theorem 6 and s € C' N S,.

Let I = C' N S,. Note that I # () since |C’| > |Sy|. We split the boundaries

between S,, I and S, in three sets :

From Static Code Distribution to More Shrinkage 185

— Old Boundary: O C E = (v,w):v € Sg\IAwel
— New Boundary: N C E = (v,w):v € I Aw € Sy \ I
— Common Boundary: C C E = (v,w) :v € Sy \ I Aw € Sy \ I

By definition of (S,,S,), we know that g(O) = ¢(O). We also know that since
(C',C7) and (Sy, S,) are both minimum cuts : w(0) +w(C) = w(N) +w(C) =
w(0) = w(N). Remark that since g is a legal flow, the flow entering I must be
equal to the flow getting out of I, which means that g(O) = g(N).

The combination of these tree equations leads to a contradiction: since the

edges in IV are saturated, ¢ is not reachable from any n € I in Gy which means
that I = 0. n

Finally, we can prove that the worst execution time for the unshackling heuris-
tics stays within the complexity of the reduction algorithm :

Theorem 9. The unshackling algorithm from figure 4 can be implemented with
2
worst case complexity O(nzmlog(%)) if the complexity of unshackle() is in

O(nm log(%z)),

Proof. Consider an irreducible graph in which one and only one edge {vy,va} is
contracted. Before contraction, Vv € V' : MAX-MIN-st (v,T) = {v}. It is easy to
see (proof by contradiction) that after contraction Vo € V\{v1,v2} : MAX-MIN-st
(v, T) = {v}, i.e. the contraction only affects the resulting node from the contrac-
tion, which means that after each contraction only one MAX-MIN-st cut has to be
calculated. Since at most n contractions are possible, the number of MAX-MIN-st
calculations needed can be bounded by 2n (n for the initial reduction and n for
all subsequent reductions). The worst case complexity is therefore as stated, if

the complexity of unshackle() is O(nm log(%)). [|

5.2 Results

It remains to define the way we will unshackle the graph. We tried several local
procedures, among which :

— Greedy : take an edge with maximal weight.
— FError-reduction : take an edge where the expected error is small
— Balanced weight : take an edge {n1,ns} such that
Do timmremy WL) + 3000 nepy w(ng, n') is maximal
— Maz-unshackle : take an edge that has high reduction rate

Surprisingly, we found that balanced weight works much better than the others.
Unfortunately, we discovered that none of these heuristics have a fixed approxi-
mation bound, however, since our calculations include the ones from the k — %
approximation algorithm, we can compare the results and take the better of
both, resulting in the same bound without any extra cost. In order to compare
both heuristics, this has not been done in the following experiments.

Two sets of experiments were conducted : figures 5(a), 5(b) show the results
on random graphs, while 5(c) shows the results on graphs obtained from auto
generated programs.

186 B. De Wachter, A. Genon, and T. Massart

Error % 414/1111 Instanceés (37.26% where H94 of HO4 != OPT)
. H94/OPT (100% non opt) +
35 | * HO4/OPT (64.73% non opt) 4
+ Mean H94 (6.83%) -~
Mean HO4 (3.59%)
30 F +r b
* +
25 | o g
+ e
20 -+ 3 * 4
155 + ¥, * N q
+ 3 X " *
+ -
ol ¥ T s |
i oW e
] * + & ; £ *
- F .

153 1{ ‘f:: X x : ifr *ae¥ o+ o+ T ek b
LI AUCEE T IR R O ’
RET S I T G D S NS R

1 15 2 25 3 35 Degree

(a) Unshackling heuristics on random graphs

Error % 414/T111 Insfances (37.26% Where H94 or HD4 I= OPT). -]
H94/OPT +
Ho4/OPT L
2 e q
15 k!
1F 4
05 [L 4
P P
2 3 4 5 6 7 8 9 10 Terminals

(b) Unshackling heuristics on random graphs

Gain % B B Grammar Graphs
H94/

HO4 -

0.5 1 15 2 25

©

Degree

(c) Unshackling heuristics on grammar graphs

Fig. 5. Results for the unshackling heuristics

From Static Code Distribution to More Shrinkage 187

In figure 5(a) we compare the results of our heuristics (indicated by H04)
with the approximation algorithm (called H94) from Dahlhaus et al. 1111 exper-
iments where conducted on sufficiently small graphs (ranging from 20-40 nodes),
allowing us to compare with the optimal solution. For 411 hard cases (37%), one
of the heuristics failed to find the optimal. We can see that for increasing mean
degree (X-axis), the error rate (Y-axis, in percent w.r.t. the optimal) for both
algorithms drops rapidly, caused by the randomness in the graph. For sparse
graphs however, error rates can be as high as 35%. The mean error rate for
H 04, for these hard cases, is 3.6% while it raises to 6.8% for H94. Remark that
the failure rate for H94 is 100% of the hard cases, while our algorithm failed
in 65% of these cases. In these experiments, there was no instance where H 04
performed worse compared to H94.

Figure 5(b) shows the mean error rate (Y-axis, in % w.r.t. the optimal so-
lution) for the experiments of figure 5(a), with increasing number of terminals
(X-axis). We can clearly see the gain of our algorithm.

Figure 5(c) shows results for 25.000 grammar graphs of moderate size (600
nodes, 3 to 10 terminals), where the two algorithms are compared to each other.
X-axis gives the mean degree. We can observe a difference of as high as +35%
(Y-axis) for some cases, meaning that our algorithm improves the other by the
same amount. For only 2 instances, our algorithm performed worse (1.3% worse
and 14% worse).

6 Conclusions

In this paper, we studied the problem of optimal code distribution of an imper-
ative regular program, a problem equivalent to the multiterminal cut problem.

We presented a criterion that allows to perform shrinkage on a given graph
such that optimal solutions for the multiterminal cut problem on the resulting
graph are optimal solutions for the original graph. This criterion is a general-
ization of the criterion of Dahlhaus et al. presented in [7]. Using this shrinkage
criterion, we designed a heuristics that, in practice, finds near optimal solutions
for the multiterminal cut problem. In our search for an efficient implementation
for our shrinkage algorithm, we defined maximum size minimum cuts for wich
we prove some interesting structural properties.

Future works. We hope that structural properties can lead to a more thorough
understanding of the combinatorial structure of optimal solutions for the mul-
titerminal cut. Furthermore, we are currently searching other unshackling pro-
cedures that could be combined with our shrinkage technique. Moreover, we
are trying to determine why the balanced weight unshackling performs well in
practice.

We are also considering the use of our shrinkage technique in the branch and
bound context. We are currently integrating our shrinkage technique into the
CPLEX solver in order to speed up the general branch and bound phase of the
mixed integer optimizer.

188 B. De Wachter, A. Genon, and T. Massart
References
1. T. Massart B. DeWachter, A. Genon. From static code distribution to more shrink-

2.

3.

10.

11.

12.

13.

14.

15.
16.

17.

age for the multiterminal cut. Technical Report 007, U.L.B., December 2004.
Gruia Calinescu, Howard Karloff, and Yuval Rabani. An improved approximation
algorithm for multiway cut. J. Comput. Syst. Sci., 60(3):564-574, 2000.

Sunil Chopra and Jonathan H. Owen. Extended formulations for the a-cut problem.
Math. Program., 73:7-30, 1996.

M. Costa, L. Letocart, and F. Roupin. Minimal multicut and maximal integer
multiflow: a survey. Furopean Journal of Operational Research, 162(1):55-69, 2005.
W.H. Cunningham. The optimal multiterminal cut problem. DIMACS series in
discrete mathematics and theoretical computer science, 5:105-120, 1991.

R. Vohra D. Bertsimas, C. Teo. Nonlinear formulations and improved randomized
approximation algorithms for multicut problems. In Proc. 4th conference on integer
programming and combinatorial optimization, volume 920 of LNCS, pages 29-39,
1995.

Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, P. D. Seymour, and
Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput.,
23(4):864-894, 1994.

L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in directed
and node weighted graphs. In Proceedings of the 21st International Colloguium on
Automata, Languages and Programming, pages 487-498. Springer-Verlag, 1994.
Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM (JACM), 35(4):921-940, October 1988. ISSN:0004-
5411.

K. Hogstedt and D. Kimelman. Graph cutting algorithms for distributed appli-
cations partitioning. SIGMETRICS Performance Evaluation Review, 28(4):27-29,
2001.

Lisa Hollermann, Tsan sheng Hsu, Dian Rae Lopez, and Keith Vertanen. Schedul-
ing problems in a practical allocation model. J. Comb. Optim., 1(2):129-149, 1997.
David R. Karger, Philip Klein, Cliff Stein, Mikkel Thorup, and Neal E. Young.
Rounding algorithms for a geometric embedding of minimum multiway cut. In
STOC °99: Proceedings of the thirty-first annual ACM symposium on Theory of
computing, pages 668-678, 1999.

J. Naor and L. Zosin. A 2-approximation algorithm for the directed multiway cut
problem. SIAM J. Comput., 31(2):477-482, 2001.

M.R. Rao S. Chopra. On the multiway cut polyhedron. Networks, 21:51-89, 1991.
Tsan sheng Hsu, Joseph C. Lee, Dian Rae Lopez, and William A. Royce. Task
allocation on a network of processors. IEEE Trans. Computers, 49(12):1339-1353,
2000.

Bram De Wachter, Thierry Massart, and Cédric Meuter. dsl : An environment
with automatic code distribution for industrial control systems. In Principles of
Distributed Systems, Tth International Conference, OPODIS 2003, volume 3144 of
LNCS, pages 132—-145. Springer, 2004.

Partitioning Graphs to Speed Up Dijkstra’s
Algorithm

Rolf H. Mohring!, Heiko Schilling!, Birk Schiitz?,
Dorothea Wagner?, and Thomas Willhalm?

! Technische Universitdt Berlin, Institut fiir Mathematik,
Strale des 17. Juni 136, 10623 Berlin, Germany
2 Universitit Karlsruhe, Fakultét fiir Informatik,
Postfach 6980,76128 Karlsruhe, Germany

Abstract. In this paper, we consider Dijkstra’s algorithm for the point-
to-point shortest path problem in large and sparse graphs with a given
layout. In [1], a method has been presented that uses a partitioning of
the graph to perform a preprocessing which allows to speed-up Dijkstra’s
algorithm considerably.

We present an experimental study that evaluates which partitioning
methods are suited for this approach. In particular, we examine par-
titioning algorithms from computational geometry and compare their
impact on the speed-up of the shortest-path algorithm. Using a suited
partitioning algorithm speed-up factors of 500 and more were achieved.

Furthermore, we present an extension of this speed-up technique to
multiple levels of partitionings. With this multi-level variant, the same
speed-up factors can be achieved with smaller space requirements. It
can therefore be seen as a compression of the precomputed data that
conserves the correctness of the computed shortest paths.

1 Introduction

We consider the problem of repeatedly finding shortest paths in a large but
sparse graph with given arc weights. Dijkstra’s algorithm [2] solves this problem
efficiently with a sub-linear running time as the algorithm can stop once the
target node is reached. If the graph is static, a further reduction of the search
space can be achieved with a preprocessing that creates additional information.
More precisely, we consider the approach to enrich the graph with arc labels
that mark, for each arc, possible target nodes of a shortest paths that start with
this arc. Dijkstra’s algorithm can then be restricted to arcs whose label mark
the target node of the current search, because a sub-path of a shortest path is
also a shortest path.

This concept has been introduced in [3] for the special case of a timetable
information system. There, arc labels are angular sectors in the given layout
of the train network. In [4], the approach has been studied for general weighted
graphs. Instead of the angular sectors, different types of convex geometric objects
are implemented and compared.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 189-202, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

190 R.H. Mohring et al.

A different variation has been presented in [1], where the graph is first parti-
tioned into regions. Then an arc-flag then consists of a bit-vector that marks the
regions containing target nodes of shortest paths starting with this arc. Usually,
arc-flags result in a much smaller search space for the same amount of prepro-
cessed data. Furthermore, the generation of arc-flags can be realized without the
computation of all-pairs shortest paths in contrast to the geometric objects of
[4]. In fact, only the distances to nodes are needed that lie on the boundary of a
region. (See [1] for details.) However in [5], it has been shown that partitioning
of the graph with METIS [6] generally results in a better reduction than for the
partitioning algorithms of [1].

The first contribution of this paper is a computational study whether par-
titioning algorithms from computational geometry can be used for the arc-flag
approach and how they compare to the results of METIS. The algorithms are
evaluated with large road networks, the typical application for this problem.

As a second contribution of this paper, we present a multi-level version of arc-
flags that produces the same speed-up with lower space consumption. Therefore,
these multi-level arc-flags can be seen as a (lossy) compression of arc-flags. Note
that the compression still guarantees the correctness of a shortest-path query
but may be slower than the uncompressed arc-flags.

We start in Sect. 2 with some basic definitions and a precise description of
the problem and the pruning of the search space of Dijkstra’s algorithm with
arc-flags. In Sect.3, we present the selection of geometric partitioning algorithms
that we used for our analysis. We discuss the two-level variant of the arc-flags
in Sect. 4. In Sect. 5, we describe our experiments and we discuss the results of
the experiments in Sect. 6. We conclude the paper with Sect. 7.

2 Definitions and Problem Description

2.1 Graphs

A directed simple graph G is a pair (V, A), where V is a finite set of nodes and
A CV xV are the arcs of the graph G. Throughout this paper, the number of
nodes |V| is denoted by n and the number of arcs |A| is denoted by m. A path
in G is a sequence of nodes uy, ..., u such that (u;,u;y1) € A forall 1 <i < k.
A path with u; = uy is called a cycle. A graph (without multiple arcs) can have
up to n? arcs. We call a graph sparse, if m € O(n). We assume that we are given
a layout L : V — R? of the graph in the Euclidean plane. For ease of notation,
we will identify a node v € V with its location L(v) € R? in the plane.

2.2 Shortest Path Problem

Let G = (V,A) be a directed graph whose arcs are weighted by a function
l: A— R. We interpret the weights as arc lengths in the sense that the length
of a path is the sum of the weights of its arcs. The (single-source single-target)
shortest-path problem consists in finding a path of minimum length from a given

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 191

source s € V to a given target ¢ € V. Note that the problem is only well defined
for all pairs, if G does not contain negative cycles. If there are negative weights
but not negative cycles, it is possible, using Johnson’s algorithm [7], to convert
in O(nm + n?logn) time the original arc weights [: A — R to non-negative arc
weights I’ : A — R{ that result in the same shortest paths. Hence, in the rest of
the paper, we can safely assume that arc weights are non-negative. Throughout
the paper we also assume that for all pairs (s,¢) € V x V, the shortest path from
s to ¢ is unique.!

2.3 Dijkstra’s Algorithm with Arc-Flags

The classical algorithm for computing shortest paths in a directed graph with
non-negative arc weights is that of Dijkstra [2]. For the general case of arbitrary
non-negative arc lengths, it still seems to be the fastest algorithm with O(m +
nlogn) worst-case time. However, in practice, speed-up techniques can reduce
the running time and often result in a sub-linear running time. They crucially
depend on the fact that Dijkstra’s algorithm is label-setting and that it can be
terminated when the destination node is settled. (Therefore, the algorithm does
not necessarily search the whole graph.)

If one admits a preprocessing, the running time can be further reduced with
the following insight: Consider, for each arc a, the set of nodes S(a) that can be
reached by a shortest path starting with a. It is easy to verify that Dijkstra’s
algorithm can be restricted to the sub-graph with those arcs a for which the
target ¢ is in S(a). However, storing all sets S(a) requires O(nm) space which
results in O(n?) space for sparse graphs with m € O(n) and is thus prohibitive
in our case. We will therefore use a partition of the set of nodes V into p regions
for an approximation of the set S(a). Formally, we will use a function r : V" —
{1,...,p} that assigns to each node the number of its region. (Given a 2D layout
of the graph, a simple method to partition a graph is to use a regular grid as
illustrated in Figure 1 and assign all nodes inside a grid cell the same number.)
We will now use a bit-vector b, : {1,...,p} — {true, false} with p bits, each
of which corresponds to a region. For each arc a, we therefore set the bit b, (7)
to true iff a is the beginning of a shortest path to at least one node in region
i € {1,...,p}. For a specific shortest-path query from s to ¢, Dijkstra’s algorithm
can be restricted to the sub-graph G; with those arcs a for which the bit of the
target-region is set to true. (For all edges on the shortest path from s to ¢ the
arc-flag for the target region is set, because a sub-path of a shortest path is also
a shortest path.)

The sub-graph G; can be computed on-line during Dijkstra’s algorithm. In a
shortest-path search from s to ¢, while scanning a node u, the modified algorithm
considers all outgoing arcs but ignores those arcs which have not set the bit for
the region of the target node t. All possible partitions of the nodes lead to a
correct solution but most of them would not lead to the desired speed-up of the
computation.

! This can be achieved by adding a small fraction to the arc weights, if necessary.

192 R.H. Mohring et al.

Fig.1. A 5 x 7 grid partitioning of Germany

The space requirement for the preprocessed data is O(p - m) for p regions
because we have to store one bit for each region and arc. If p = n and we assign
to every node its own region number, we store in fact all-pairs shortest paths:
if a node is assigned to its own, specific region, the modified shortest-path al-
gorithm will find the direct path without regarding unnecessary arcs or nodes.
Note however, that in practice even for p < n we achieved an average search
space that is only 4 times the number of nodes in the shortest path. Further-
more, it is possible within the framework of the arc-flag speed-up technique to
use a specific region only for the most important nodes. Storing the shortest
paths to important nodes can therefore be realized without any additional im-
plementation effort. (It is common practice to cache the shortest paths to the
most important nodes in the graph.)

3 Partitioning Algorithms

The arc-flag speed-up technique uses a partitioning of the graph to precompute
information on whether an arc may be part of a shortest path. Any possible
partitioning can be used and the algorithm returns a shortest path, but most
partitions do not lead to an acceleration. In this section, we will present the
partitioning algorithms that we examined. Most of these algorithms need a 2D
layout of the graph.

3.1 Grid

Probably the easiest way to partition a graph with a 2D layout is to use regions
induced by a grid of the bounding box. Each grid cell defines one region of the
graph. Nodes on a grid line are assigned to an arbitrary but fixed grid cell. Figure
1 shows an example of a 5 x 7 grid.

Arc-flags for a grid can be seen as a raster image of S(u,v), where S(u,v)
represents the set of nodes x for which the shortest u-x path starts with the arc

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 193

(u,v). The pixel ¢ in the image is set, iff (u,v) is the beginning of a shortest
path to a node in region i € {1,...,p}. A finer grid (i.e., an image with higher
resolution) provides a better image of S(u,v), but requires more memory. (On
the other hand, the geometric objects in [4] approximate S(u,v) by a single
convex object of constant size.)

The grid partitioning method uses only the bounding box of the graph—
all other properties like the structure of the graph or the density of nodes are
ignored and hence it is not surprising that the grid partitioning always has the
worst results in our experiments. Since [1,5] include this partitioning method,
we use the grid partitioning as a baseline and compare all other partitioning
algorithms with it.

3.2 Quadtrees

A quadtree is a data structure for storing points in the plane. Quadtrees are
typically used in computational geometry for range queries and have applications
in computer graphics, image analysis, and geographic information systems.

Definition 1 (Quadtree). Let P be a set of points in the plane and Ry its
bounding-box. Then, the data structure quadtree is a rooted tree of rectangles,
where

— the root is the bounding region Ry, and
— Ry and all other regions R; are recursively divided into the four quadrants,
while they contain more than one point of P.

The leaves of a quadtree form a subdivision of the bounding-box Ry. Even more,
the leaves of every sub-tree containing the root form such a subdivision. Since,
for our application, we do not want to create a separate region for each node, we
use a sub-tree of the quadtree. More precisely, we define an upper bound b € N
of points in a region and stop the division if a region contains less points than
this bound b. This results in a partition of our graph where each region contains
at most b nodes. Fig. 2(a) shows such a partition with 34 regions. In contrast
to the grid-partition, this partitioning reflects the geometry of the graph—dense
parts will be divided into more regions than sparse parts.

3.3 Kd-Trees

In the construction of a quadtree, a region is recursively divided into four equally-
sized sub-regions. However, equally-sized sub-regions do not take into account
the distribution of the points. This leads to the definition of a kd-tree. In the
construction of a kd-tree, the plane is recursively divided in a similar way as for a
quadtree. The underlying rectangle is decomposed into two halves by a straight
line parallel to an axis. The directions of the dividing line alternate. The positions
of the dividing line can depend on the data. Frequently used positions are given
by the center of the rectangle (standard kd-tree), the average, or the median of
the points inside. (Fig. 2(b) shows a result for the median and 32 regions.) If

194 R.H. Mohring et al.

(a) Quadtree (34 regions) (b) Kd-Tree (32 regions) (c) METIS (32 regions)

Fig. 2. Germany with three different partitions

the median of points in general position is used, the partitioning has always 2!
regions.

The median of the nodes can be computed in linear time with the median of
medians algorithm [8]. Since the running time of the preprocessing is dominated
by the shortest-path computations after the partitioning of the graph, we decided
to use a standard sorting algorithm instead. (As a concrete example, the kd-tree
partitioning with 64 regions for one of our test graphs with one million nodes
was calculated in 175s, calculating the arc-flags took seven hours.)

3.4 METIS

A fast method to partition a graph into k almost equally-sized sets with a small
cut-set is presented in [9]. An efficient implementation can be obtained free-of-
charge from [6]. There are two advantages of this method for our application. The
METIS partitioning does not need a layout of the graph and the preprocessing
is faster because the number of arcs in the cut is noticeable smaller than in the
other partitioning methods. Fig. 2(c) shows a partitioning of a graph generated
by METIS.

4 Two-Level Arc-Flags

An analysis of the calculated arc-flags reveals that there might exist possibilities
to compress the arc-flags. For 80% of the arcs either almost none or nearly all bits
of their arc-flags are set. Table 1 shows an excerpt of the analysis we made. The
column "= 1" shows the number of arcs, which are only responsible for shortest
paths inside their own region (only one bit is set). Arcs with more than 95%
bits set could be important roads. This justifies ideas for (lossy) compression

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 195

Table 1. Some statistics about the number of regions that are marked in arc-flags

graph Ffarcs algorithm # marked regions
=1 <10% >95%
road_network_1 920,000 KdTree(32) 351,255 443,600 312,021
road_network_1 920,000 KdTree(64) 334,533 470,818 294,664
road_network_1 920,000 METIS(80) 346,935 468,101 290,332
(32)
(64)

road_network_4 2,534,000 KdTree 960,779 1,171,877 854,670
road_network_4 2,534,000 KdTree 913,605 1,209,353 799,206

(a) Without two-level (b) For each arc a bit-vector is stored for the
arc-flags a search vis- coarse 5 X 5 grid and a bit-vector for a fine 3 x 3
its almost all arcs in grid in the same coarse region as the arc.

the target region.

Fig. 3. Illustrations for two-level vectors

of the arc-flags, but it is important that the decompression algorithm is very
fast—otherwise the speed-up of time will be lost.

Let us have a closer look at a search space to get an idea of how to compress
the arc-flags. As illustrated in Figure 3(a) for a search from the dark grey node to
the light grey node, the modified DIJKSTRA search reduces the search space next
to the beginning of the search but once the target region has been reached, almost
all nodes and arcs are visited. This is not very surprising if you consider that
usually all arcs of a region have set the region-bit of their own region. We could
handle this problem if we used a finer partition of the graph but this would lead
to longer arc-flags (requiring more memory and a longer preprocessing). Take
the following example, if we used a 15 x 15 grid instead of a 5 x 5 grid, each
region would be split in 9 additional regions but the preprocessing data increases
from 25 to 225 bits per arc. However, the additional information for the fine grid
is mainly needed for arcs in the target region of the coarse grid. This leads to
the idea that we could split each region of the coarse partition but store this

196 R.H. Mohring et al.

additional data (for the fine grid) only for the arcs inside the same coarse region.
Therefore, each arc gets two bit-vectors: one for the coarse partition and one for
the associated region of the fine partition.

The advantage of this method is that the preprocessed data is smaller than
for a fine one-level partitioning, because the second bit-vector exists only for the
target region (34 bits per arc instead of 225). It is clear that the 15 x 15 grid
would lead to better results. However, the difference for the search spaces is small
because we expect that entries in arc-flags of neighboring regions are similar for
regions far away. Thus, we can see this two-level method as a compression of the
first-level arc-flags. We summarize the bits for remote regions. If one bit is set
for a fine region, the bit is set for the whole group.

Only a slight modification of the search algorithm is required. Until the target
region is reached, everything will remain unaffected, unnecessary arcs will be
ignored with the arc-flags of level one. If the algorithm has entered the target
region, the second-level arc-flags provide further information on whether an arc
can be ignored for the search of a shortest path to the target-node.

Experiments showed (Section 6) that this method leads to the best results
concerning the reduction of the search space, but an increased preprocessing
effort is needed. Note however, that it is not necessary in the preprocessing to
compute the complete shortest-path trees for all boundary nodes of the fine
partitioning. The computation can be stopped if all nodes in the same coarse
region are finished.

5 Experimental Setup

The main goal of this section is to compare the different partitioning algorithms
with regard to their resulting search space and speed-up of time during the ac-
celerated DIJKSTRA search. We tested the algorithms on German road networks,
which are directed and have a 2D layout and positive arc weights. Table 2 shows
some characteristics of the graphs. The column “shortest path” is the average
number of nodes on a shortest path in the graph. For the unmodified Dijkstra’s
algorithm, the average running time and number of nodes touched by the algo-
rithm is given for 5000 runs.

All experiments are performed with an implementation of the algorithms
in C++ using the GCC compiler 3.3. We used the graph data structure from

Table 2. Characteristics of tested road networks. The columns “shortest paths” pro-
vides the average number of nodes on a shortest path

Graph #nodes #arcs shortest Dijkstra’s algorithm
path time [s] #touched nodes
road_network_1 362,000 920,000 250 0.26 183,509
road_network_2 474,000 1,169,000 440 0.27 240,421
road_network_3 609,000 1,534,000 580 0.30 306,607
road_network_4 1,046,000 2,534,000 490 0.78 522,850

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 197

LEDA 4.4 [10]. As we do not have real-world shortest-path queries we considered
random queries for our experiments. For each graph, we generated a demand file
with 5000 random shortest-path requests so that all algorithms use the same
shortest-path demands. All runtime measurements were made on a single AMD
Opteron Processor with 2.2 GHz and 8 GB RAM. Note that our algorithms are
not optimized with respect to space consumption. However, even for the largest
graphs considered in this study significant less than 8 GB RAM would suffice.

Our speed-up method reduces the complete graph for each search to a smaller
sub-graph and this leads to a smaller search space. We sampled the average size
of the search space by counting the number of visited nodes and measured the
average CPU time per query. Dijkstra’s algorithm is used as a reference algo-
rithm to compare search space and CPU time. Fortunately, Dijkstra’s algorithm
with arc-flags only tests a bit of a bit-vector and does not lead to a significant
overhead. In graphs we tested, there is a strong linear correlation between the
search space and the CPU time. This justifies that in the analysis it is sufficient
to consider the search space only.

Arc-flags can be combined with a bidirectional search. In principle, arc-flags
can be used independently for the forward search, the backward search, or both
of them. In our experiments the best results (with a fixed total number of bits
per arc) achieved a forward and backward accelerated bidirectional search, which
means that we applied the partition-based speed-up technique on both search
directions (with half of the bits for each direction).

6 Computational Results

6.1 Quadtrees and Kd-Trees

We first compared the four geometric partitioning methods quadtrees and kd-
trees for the center (standard), average, and median. Figure 4(a) shows the
average search space for a road network for an increasing number of bits per arc.
As the differences are indeed very small, we will use only kd-trees with median
in the rest of this section as a representative for this partitioning class.

We now compare the average search space for different graphs. For an easy
comparison we consider the search space relative to the average search space
of Dijkstra’s algorithm in this graph. Figure 4(b) provides the relative average
search space for an increasing number of bits per arc. It is remarkable that for
arc-flags in this range of size all curves follow a power law.

6.2 Two-Level Partitionings

The main reason for the introduction of the second-level partitions was that no
arc is excluded from the shortest-path search inside the region of the target node
t. Therefore, the second-level arc-flags reduce the shortest-path search mainly if
the search already approaches the target. Figure 5 compares the search spaces
of the one-level and two-level accelerated searches. Although only very few bits
are added, the average search space is reduced to about half of its size.

198 R.H. Mohring et al.

20.0

=¥ e mvrag <5y ;
;:: g & kd-Tree Median| o, S 4
¥k g -
R &
< wn
(] w
@ T T T T T s T T T T T T
bits per arc bits per arc
(a) Partitioning with quadtree and (b) Partitioning with median kd-tree
three kd-tree partitions (standard, av- for road network 1-4. The search space
erage, and median). The difference for is plotted relative to the search space
the resulting search space is marginal. of Dijkstra’s algorithm.

Fig. 4. Average search space for different sizes of arc-flags. With an increasing number
of bits per arc, the search space gets smaller

14000
13000
12000
11000
10000
9000
8000

7000 I kdTree
6000 Il kdTree (2level)
5000
4000
3000
2000
1000
=

search space [# nodes|

network’1 network 2 network’'3 network'4

Fig. 5. Comparison of one-level (64 regions) and two-level (64 first-level regions, 8
second-level regions) arc-flags with kd-trees

Using a bidirectional search, the two-level strategy becomes less important,
because the second-level arc-flags will not be used in most of the shortest-path
searches: the second-level arc-flags are only used, if the search enters the region
of the target. During a bidirectional search the probability is high that the
two search horizons meet in a different region than the source or target region.
Therefore, the second-level arc-flags are mainly used, if both nodes are lying in
the same region. Figure 6 confirms this estimation. Only for large partitions in
the first level is a speed-up recognizable. If more than 50 bits for the first level
are used, the difference is very small. We conclude that the second-level strategy
does not seem to be useful in a bidirectional search.

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 199

]]

° g}

Q s Q s

= s = s

Nis his

© £ w5

Q Q

% %

g g

n g ®]

< <

O s O o

=2 =2 A

35 35

]]

n T T T T T T T n T T T T T T T
20 40 60 80 100 120 140 20 40 60 80 100 120 140

bits per arc (first and second level) bits per arc (first level)

Fig. 6. Average search space for a bidirectional search using arc-flags by kd-trees.
The two-level strategy becomes irrelevant for the bidirectional search. If more than
50 regions are used for the first-level, the two-level acceleration does not provide any
noticeable improvement

6.3 Comparison of the Partitioning Methods

Finally, we want to compare the different algorithms directly. We have four
orthogonal dimensions in our algorithm tool-box:

The base partitioning method: Grid, KdTree or METIS
The number of partitions

Usage of one-level partitions or two-level partitions
Unidirectional or bidirectional search

Ll

Since computing all possible combinations on all graphs takes way too much
time, we selected the algorithms that are listed in Table 3. (We refrained from
implementing Bi2Metis, because usually the two-level arc-flags in a bidirectional
search hardly performed better than the one-level variant.) Furthermore, we fix
the size of the preprocessed data to nearly the same number for all algorithms.

Table 3. Partitionings with nearly the same preprocessed data size of 80 bit

Name of partitioning forward backward bits per arc
15 level 2™? level|1%¢ level 27? level
Grid 9x%x9 - - - 81
KdTree 64 - - - 64
METIS 80 - - - 80
2LevelGrid 8 x 8 4 x4 - - 80
2LevelKd 64 16 - - 80
2Level METIS 72 8 - - 80
BiGrid Tx7 -l 6x6 - 85
BiKd 32 - 32 - 64
BiMETIS 40 - 40 - 80
Bi2LevelGrid 6x6 2x2 6x6 2x2 80
Bi2LevelKd 32 8 32 8 80

200 R.H. Mohring et al.

(The same size can not be realized due to the restrictions by the construction of
the partitioning algorithms.) Figure 7 compares the results of our partitioning
methods on the four road networks.

For the unidirectional searches, the two-level strategies yield the best results
(a factor of 2 better than for their corresponding one-level partitioning). For the
bidirectional search, we can see some kind of saturation: the differences between
the partitioning techniques are very small.

Figure 8 shows the search space for the four road networks. Note that in the
case of a bidirectional search, a large number of bits per arc already shows some

15000
]

10000
Il

T
T
e
T

D) D 3\ D D A) D D
@ @ @ @ ¢ & ¢ & & &
RS o @ > > L RS < L Q
N e 5 N & 5 \ 5
S 5 s S s S R &
& N
S S AP e P S A M
+ ~ P S° N °® Ny N
P i efe A4 Q;@
o
)

Fig. 7. Average search space for most of the implemented algorithms in road net-
works 1-4. The number of bits are noted in brackets

5000 10000 20000

search space [#nodes]

1000 2000

500
L

r T T T 1
16 32 64 128 256

bits per arc

Fig. 8. Search space for road networks 1-4 with a bidirectional accelerated search using
kd-tree partitions

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 201

effects of saturation as the curves are bent. In contrast, in Fig. 4(b) the curves
follow a power-law.

7 Conclusion and Outlook

The best partition-based speed-up method we tested is a bidirectional search,
accelerated in both directions with kd-tree or METIS partitions. We can measure
speed-ups of more than 500. (In general, the speed-up increases with the size of
the graph.) Even with the smallest preprocessed data (16 bit per arc), we get
a speed-up of more than 50. The accelerated search on network 4 is 545 times
faster than plain Dijkstra’s algorithm using 128 bits per arc preprocessed data
(1.3ms per search). Of the tested partitioning methods, we can recommend the
kd-tree used for forward and backward acceleration. The partitionings with kd-
trees and METIS yield the highest speed-up factors, but kd-trees are easier to
implement.

It would be particularly interesting to develop a specialized partitioning
method that is optimized for the arc-flags approach. Our experiments showed
that our intuition is right that regions should be equally sized and nodes should
be grouped together if their graph-theoretic distance is small. However, we can-
not prove that our intuition is theoretically the best partitioning method for
arc-flags. Although many further techniques are known from graph clustering,
all optimization criteria that we are aware of either result in a large running
time or their use for the arc-flags approach cannot be motivated.

For an unidirectional search the two-level arc-flags lead to a considerable
speed-up. The reduction of the search space outweighs by far the overhead to
“uncompress” two-level arc-flags. It would, however, be interesting to evaluate
whether this effect can be repeated with a third or fourth level of compression
(especially for very large graphs like the complete road network of Europe).

There are further known speed-up techniques [11,12,13,14]. Although the
speed-up factors of these speed-up techniques are not competitive, experimental
studies [15, 16] with similar techniques suggest that combinations outperform a
single speed-up technique. A systematic evaluation of combinations with current
approaches would therefore be of great value.

References

1. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In Raubal, M., Sliwinski, A., Kuhn, W.,
eds.: Geoinformation und Mobilitdt - von der Forschung zur praktischen Anwen-
dung. Volume 22 of IfGI prints., Institut fiir Geoinformatik, Miinster (2004) 219-
230

2. Dijkstra, E.-W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269-271

3. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics
5 (2000)

202

10.

11.

12.

13.

14.

15.

16.

R.H. Mohring et al.

Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In Battista, G.D., Zwick, U., eds.: Proc. 11th Eu-
ropean Symposium on Algorithms (ESA 2003). Volume 2832 of LNCS., Springer
(2003) 776-787

Kohler, E., Mohring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. (2005) Submitted to WEA’05.

Karypis, Gu.: METIS: Family of multilevel partitioning algorithms.
http://www-users.cs.umn.edu/ karypis/metis/ (1995)

Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM (JACM) 24 (1977) 1-13

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge Massachusetts (2001)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing archive 20 (1998) 359-392
Mehlhorn, K., Naher, S.: LEDA, A platform for Combinatorial and Geometric
Computing. Cambridge University Press (1999)

Jung, S., Pramanik, S.: HiTi graph model of topographical road maps in navigation
systems. In: Proc. 12th IEEE Int. Conf. Data Eng. (1996) 76-84

Holzer, M.: Hierarchical speed-up techniques for shortest-path algorithms. Tech-
nical report, Dept. of Informatics, University of Konstanz, Germany (2003)
http://www.ub.uni-konstanz.de/kops/volltexte/2003,/1038//.

Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph
theory. Technical Report MSR-TR-2004-24, Microsoft Research (2003) Accepted
at SODA 2005.

Gutman, R.: Reach-based routing: A new approach to shortest path algortihms
optimized for road networks. In Arge, L., Italiano, G.F., Sedgewick, R., eds.: Proc.
Algorithm Engineering and Experiments (ALENEX’04), SIAM (2004) 100-111
Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-
path computations. In Ribeiro, C.C., Martins, S.L., eds.: Experimental and Ef-
ficient Algorithms: Third International Workshop, (WEA 2004). Volume 3059 of
LNCS., Springer (2004) 269-284

Wagner, D., Willhalm, T.: Drawing graphs to speed up shortest-path com-
putations. In: Proc. 7th Workshop Algorithm Engineering and Experiments
(ALENEX’05). LNCS, Springer (2005) To appear.

Efficient Convergence to Pure Nash Equilibria
in Weighted Network Congestion Games*

Panagiota N. Panagopoulou and Paul G. Spirakis

Computer Technology Institute, Riga Feraiou 61, 26221, Patras, Greece
Computer Engineering and Informatics Department, Patras University, Greece
panagopp@hermes.cti.gr; spirakis@cti.gr

Abstract. In large-scale or evolving networks, such as the Internet,
there is no authority possible to enforce a centralized traffic manage-
ment. In such situations, Game Theory and the concepts of Nash equi-
libria and Congestion Games [8] are a suitable framework for analyzing
the equilibrium effects of selfish routes selection to network delays.

We focus here on layered networks where selfish users select paths to
route their loads (represented by arbitrary integer weights). We assume
that individual link delays are equal to the total load of the link. We
focus on the algorithm suggested in [2], i.e. a potential-based method
for finding pure Nash equilibria (PNE) in such networks. A superficial
analysis of this algorithm gives an upper bound on its time which is
polynomial in n (the number of users) and the sum of their weights. This
bound can be exponential in n when some weights are superpolynomial.
We provide strong experimental evidence that this algorithm actually
converges to a PNE in strong polynomial time in n (independent of the
weights values). In addition we propose an initial allocation of users
to paths that dramatically accelerates this algorithm, compared to an
arbitrary initial allocation. A by-product of our research is the discovery
of a weighted potential function when link delays are exponential to their
loads. This asserts the existence of PNE for these delay functions and
extends the result of [2].

1 Introduction

In large-scale or evolving networks, such as the Internet, there is no authority
possible to employ a centralized traffic management. Besides the lack of central
regulation, even cooperation of the users among themselves may be impossi-
ble due to the fact that the users may not even know each other. A natural
assumption in the absence of central regulation and coordination is to assume

* This work was partially supported by the EU within the Future and Emerging
Technologies Programme under contract IST200133135 (CRESCCO) and within the
6th Framework Programme under contract 001907 (DELIS).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 203-215, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

204 P.N. Panagopoulou and P.G. Spirakis

that network users behave selfishly and aim at optimizing their own individual
welfare. Thus, it is of great importance to investigate the selfish behavior of users
so as to understand the mechanisms in such non-cooperative network systems.

Since each user seeks to determine the shipping of its own traffic over the
network, different users may have to optimize completely different and even
conflicting measures of performance. A natural framework in which to study such
multi-objective optimization problems is (non-cooperative) game theory. We can
view network users as independent agents participating in a non-cooperative
game and expect the routes chosen by users to form a Nash equilibrium in the
sense of classical game theory: a Nash equilibrium is a state of the system such
that no user can decrease his individual cost by unilaterally changing his strategy.

Users selfishly choose their private strategies, which in our environment cor-
respond to paths from their sources to their destinations. When routing their
traffics according to the strategies chosen, the users will experience an expected
latency caused by the traffics of all users sharing edges (i.e the latency on the
edges depends on their congestion). Each user tries to minimize his private cost,
expressed in terms of his individual latency. If we allow as strategies for each user
all probability distributions on the set of their source-destination paths, then a
Nash equilibrium is guaranteed to exist. It is very interesting however to explore
the existence of pure Nash equilibria (PNE) in such systems, i.e. situations in
which each user is deterministically assigned on a path from which he has no
incentive to unilaterally deviate.

Rosenthal [8] introduced a class of games, called congestion games, in which
each player chooses a particular subset of resources out of a family of allowable
subsets for him (his strategy set), constructed from a basic set of primary re-
sources for all the players. The delay associated with each primary resource is
a non-decreasing function of the number of players who choose it, and the total
delay received by each player is the sum of the delays associated with the pri-
mary resources he chooses. Each game in this class possesses at least one Nash
equilibrium in pure strategies. This result follows from the existence of a real-
valued function (an ezact potential [6]) over the set of pure strategy profiles with
the property that the gain of a player unilaterally shifting to a new strategy is
equal to the corresponding increment of the potential function.

In a multicommodity network congestion game the strategy set of each player
is represented as a set of origin-destination paths in a network, the edges of which
play the role of resources. If all origin-destination pairs of the users coincide
we have a single commodity network congestion game. In a weighted congestion
game we allow users to have different demands for service, and thus affect the
resource delay functions in a different way, depending on their own weights.
Hence weighted congestion games are not guaranteed to possess a PNE.

Related Work. As already mentioned, the class of (unweighted) congestion games
is guaranteed to have at least one PNE. In [1] it is proved that a PNE for any
(unweighted) single commodity network congestion game can be constructed in
polynomial time, no matter what resource delay functions are considered (so
long as they are non-decreasing functions with loads). On the other hand, it is

Efficient Convergence to Pure Nash Equilibria 205

shown that even for an unweighted multicommodity network congestion game it
is PLS-complete to find a PNE, though it certainly exists.

For the special case of single commodity network congestion games where the
network consists of parallel edges from a unique origin to a unique destination
and users have varying demands, it was shown in [3] that there is always a pure
Nash equilibrium which can be constructed in polynomial time.

[5] deals with the problem of weighted parallel-edges congestion games with
user-specific costs: each allowable strategy of a user consists of a single resource
and each user has his own private cost function for each resource. It is shown
that all such games involving only two users, or only two possible strategies for
all the users, or equal delay functions, always possess a PNE. However, it is
shown that even a 3-user, 3-strategies, weighted parallel-edges congestion game
may not possess a PNE.

In [2] it is proved that even for a weighted single commodity network conges-
tion game with resource delays being either linear or 2-wise linear functions of
their loads, there may be no PNE. Nevertheless, it is proved that for the case of
a weighted single commodity ¢-layered network congestion game (to be defined
later) with resource delays identical to their loads, at least one PNE exists and
can be computed in pseudo-polynomial time.

Our Results. We focus our interest on weighted ¢-layered network congestion
games with resource delays equal to their loads. As already mentioned, any such
game possesses a PNE, and the algorithm suggested in [2] requires at most a
pseudo-polynomial number of steps to reach an equilibrium; this bound however
has not yet been proven to be tight. The algorithm starts with any initial al-
location of users on paths and iteratively allows each unsatisfied user to switch
to any other path where he could reduce his cost. We experimentally show that
the algorithm actually converges to a PNE in polynomial time for a variety of
networks and distributions of users’ weights. In addition, we propose an initial
allocation of users onto paths that, as our experiments show, leads to a significant
reduction of the total number of steps required by the algorithm, as compared
to an arbitrary initial allocation.

Moreover, we present a b-potential function for any single commodity net-
work congestion game with resource delays exponential to their loads, thus as-
suring the existence of a PNE in any such game (Theorem 2).

2 Definitions and Notation

Games, Congestion Games and Weighted Congestion Games. A game ' =
(N, (I;)ien, (ui)ien) in strategic form is defined by a finite set of players N =
{1,...,n}, a finite set of strategies II; for each player i € N, and a payoff func-
tion wu; : I — IR for each player, where II = X;cn1I; is the set of pure strategy
profiles or configurations. A game is symmetric if all players are indistinguish-
able, i.e. all IT;’s are the same and all u;’s, considered as a function of the choices
of the other players, are identical symmetric functions of n — 1 variables. A pure

206 P.N. Panagopoulou and P.G. Spirakis

Nash equilibrium (PNE) is a configuration = = (my,...,m,) such that for each
player i, u;(w) > u;(my,...,m,...,m,) for any «, € II;. A game may not pos-
sess a PNE in general. However, if we extend the game to include as strategies
for each ¢ all possible probability distributions on II; and if we extend the pay-
off functions u; to capture expectation, then an equilibrium is guaranteed to
exist [7].

A congestion model (N, E, (II;)ien, (de)eck) is defined as follows. N denotes
the set of players {1,...,n}. E denotes a finite set of resources. For i € N let
1I; be the set of strategies of player ¢, where each w; € II; is a nonempty subset
of resources. For e € E let d. : {1,...,n} — IR denote the delay function, where
de(k) denotes the cost (e.g. delay) to each user of resource e, if there are exactly
k players using e. The congestion game associated with this congestion model
is the game in strategic form (N, (I1;);en, (u;)ien), where the payoff functions
u; are defined as follows: Let IT = X;en/Il;. For all w = (wy,...,w,) € II
and for every e € E let o.(w) be the number of users of resource e according
to the configuration w: o.(w) = [{i € N:e € w;}|. Define u; : II — IR by
(@) = = e, de(0:()).

In a weighted congestion model we allow the users to have different demands,
and thus affect the resource delay functions in a different way, depending on their
own weights. A weighted congestion model (N, (w;)ien, E, (IT;)ien, (de)eck) is
defined as follows. N, E and II; are defined as above, while w; denotes the
demand of player i and for each resource e € E, d.(-) is the delay per user that
requests its service, as a function of the total usage of this resource by all the
users. The weighted congestion game associated with this congestion model is the
game in strategic form {(w;)ien, (I1;)icn, (u;)icn), where the payoff functions
u; are defined as follows. For any configuration w € IT and for all e € F, let
Ae(w) ={i € N : e € w;} be the set of players using resource e according to .
The cost Af(w) of user i for adopting strategy w; € II; in a given configuration
w is equal to the cumulative delay A, (@) on the resources that belong to w;:
')\i(w) = Ap, (@) = Zeew,',. de(fe(w)) where, for all e € E, 0.(w) = ZieAE(w).wi
is the load on resource e with respect to the configuration w. The payoff function
for player i is then u;(w) = —A%(w). A configuration @ € II is a PNE if and
only if, for all i € N, A\, (w) < Ar, (w_i, ;) Vm; € II;, where (w_;,m;) is the
same configuration as w except for user ¢ that has now been assigned to path
m;. Since the payoff functions u; can be implicitly computed by the resource
delay functions d., in the following we will denote a weighted congestion game
by ((wi)ien, (I;)ien, (de)ecE)-

In a network congestion game the families of subsets II; are presented im-
plicitly as paths in a network. We are given a directed network G = (V, E) with
the edges playing the role of resources, a pair of nodes (s;,t;) € V x V for each
player ¢ and the delay function d. for each e € E. The strategy set of player i
is the set of all paths from s; to ¢;. If all origin-destination pairs (s;,t;) of the
players coincide with a unique pair (s,t) we have a single commodity network
congestion game and then all users share the same strategy set, hence the game
is symmetric. If users have different demands, we refer to weighted network con-

Efficient Convergence to Pure Nash Equilibria 207

gestion games in the natural way. In the case of a weighted single commodity
network congestion game however the game is not necessarily symmetric, since
the users have different demands and thus their cost functions will also differ.

Potential Functions. Fix some vector b € IRY,. A function F' : x;enIl; - Risa
b-potential for the weighted congestion game I' = ((w;)ien, (II;)ien, (de)eck) if
Vw € XienIl;, Vi € NV € IT;, Xo(w) — AN (w_y,m;) = b; - (F(w) — F(w_;,7)).
F is an ezact potential for I' if b; = 1 for all ¢ € N. It is well known [6] that if
there exists a b-potential for a game I', then I" possesses a PNE.

Layered Networks. Let £ > 1 be an integer. A directed network (V) E) with a
distinguished source-destination pair (s,t), s,t € V, is ¢-layered if every directed
s —t path has length exactly ¢ and each node lies on a directed s — ¢ path. The
nodes of an f-layered network can be partitioned into ¢ + 1 layers, Vg, Vi, ...,
Vi, according to their distance from the source node s. Since each node lies on
directed s —t path, Vy = {s} and V;, = {t¢}. Similarly we can partition the edges
E of an ¢-layered network in ¢ subsets Ej, ..., E, where for all j € {1,...,/¢},
E;={e=(u,v) e E:ueV;_yand v e V;}.

3 The Problem

We focus our interest on the existence and tractability of pure Nash equilibria
in weighted ¢-layered network congestion games with resource delays identical
to their loads. Consider the ¢-layered network G = (V, E') with a unique source-
destination pair (s,t) and the weighted single commodity network congestion
game ((w;)ien, P, (de)ecr) associated with G, such that P is the set of all di-
rected s —t paths of G and d.(z) =z for all e € E. Let w = (w3, ...,wy,) be an
arbitrary configuration and recall that 6. (w) denotes the load of resource e € E
under configuration w. Since resource delays are equal to their loads, for all
i € N it holds that X' (@) = Ax, (@) = X ecr, 0c(®@) = X, 2 jenjecm; Wi

A user ¢ € N is satisfied in the configuration w € P™ if he has no incentive to
unilaterally deviate from w, i.e. if for all s—t paths 7 € P, Ay, (@) < Ap(w_;,).
The last inequality can be written equivalently

)‘Wz‘ (’ZD,Z) + ng <)\ﬂ—(’(ﬂ,i) + ng <~)"WI (wfl) < /\ﬂ—(’w,i) s

hence user i is satisfied if and only if he is assigned to the shortest s — ¢ path
calculated with respect to the configuration w_; of all the users except for i.
The configuration w is a PNE if and only if all users are satisfied in . In [2] it
was shown that any such weighted ¢-layered network congestion game possesses
a PNE that can be computed in pseudo-polynomial time:

Theorem 1 ([2]). For any weighted (-layered network congestion game with
resource delays equal to their loads, at least one PNE exists and can be computed
in pseudo-polynomial time.

208 P.N. Panagopoulou and P.G. Spirakis

Proof (sketch). The b-potential function establishing the result is

P(w) = 3 (0u(w))*

where, Vi € N, b; = 5. i

In Sect. 4 we present the pseudo-polynomial algorithm Nashify() for the com-
putation of a PNE for a weighted ¢-layered network congestion game, while in
Sect. 6 we experimentally show that such a PNE can actually be computed in
polynomial time, as our following conjecture asserts:

Conjecture 1. Algorithm Nashify() converges to a PNE in polynomial time.

4 The Algorithm

The algorithm presented below converts any given non-equilibrium configuration
into a PNE by performing a sequence of greedy selfish steps. A greedy selfish
step is a user’s change of his current pure strategy (i.e. path) to his best pure
strategy with respect to the current configuration of all other users.

Algorithm Nashify(G, (w;)ien)
Input: {-layered network G and a set N of users, each user i having weight w;
Output: configuration w which is a PNE

1. begin

2. select an initial configuration w = (w1, ..., @n)

3. while 3 user ¢ such that A, (cw—;) > As(w—;) where s = Shortest_Path(cw_;)
4. w; = Shortest_Path(w_;)

5. return w

6. end

The above algorithm starts with an initial allocation of each user i € N on
an s —t path w; of the ¢-layered network G. The algorithm iteratively examines
whether there exists any user that is unsatisfied. If there is such a user, say 1,
then user i performs a greedy selfish step, i.e. he switches to the shortest s — ¢
path according to the configuration w_;. The existence of the potential function
@ assures that the algorithm will terminate after a finite number of steps at a
configuration from which no user will have an incentive to deviate, i.e. at a PNE.

Complexity Issues. Let W =),y w;. Note that in any configuration w € P"
and for all j € {1,...,¢} it holds that ZeeEj 0. (ww) = W. It follows that

2

L
D(w) =D (0(@)* =D (0e(@)* <D | D belw) | =W .

eckE j=1ecE; Jj=1 \e€E;

Without loss of generality assume that the users have integer weights. At each
iteration of the algorithm Nashify() an unsatisfied user performs a greedy selfish

Efficient Convergence to Pure Nash Equilibria 209

step, so his cost must decrease by at least 1 and thus the potential function @
decreases by at least 2 min; w; > 2. Hence the algorithm requires at most %ZWQ
steps so as to converge to a PNE.

e (max; 'w-)2 k

Proposition 1. Suppose that —~—t— = O(n") for some constant k. Then
algorithm Nashify() will converge to a PNE in polynomial time.

Proof. Observe that ®(w) < (W2 < f(nmax; w;)? = n? min; w; - O(n*), which
implies that the algorithm will reach a PNE in O(¢n**+2) steps. O

5 The Case of Exponential Delay Functions

In this section we deal with the existence of pure Nash equilibria in weighted
single commodity network congestion games with resource delays being expo-
nential to their loads. Let G = (V, E) be any single commodity network (not
necessarily layered) and denote by P the set of all s — ¢ paths in it from the
unique source s to the unique destination ¢. Consider the weighted network con-
gestion game I' = ((w;)ien, P, (de)eck) associated with G, such that for any
configuration @ € P™ and for all e € FE, d.(0.(w)) = exp(f.(w)). We next
show that F(w) =) .pexp(f.(w)) is a b-potential for such a game and some
positive n-vector b, assuring the existence of a PNE.

Theorem 2. For any weighted single commodity network congestion game with
resource delays exponential to their loads, at least one PNE exists.

Proof. Let w € P™ be an arbitrary configuration. Let ¢ be a user of demand w;
and fix some path 7; € P. Denote @w’ = (w_;, m;). Observe that

N(w) — M) = Z exp(fe(w_;) +w;) — Z exp(fq(w_;) + w;)

e€w;\m; e€m; \w;

—exp(w)- [Y epl@m))— Y exp(B(w_))

e€w; \m; e€m; \w;

Note that, for all e ¢ {{ww; \ m;} U{m; \ @;}}, it holds that 0.(w) = b.(w’). Now

F(w) - F(&') = Z exp (Oe(w—;) + w;) — exp(fe(w—;))

e€w; \m;
+ Z exp(fe(w_;)) — exp(Be(w_;) + w;)
eem;\w;
exp(wi;) =1, i
_ -~ 7)\Z _ A’L
et (V@) =X (=)
Thus, F' is a b-potential for our game, where Vi € N,b; = %, assuring

the existence of at least one PNE. O

210 P.N. Panagopoulou and P.G. Spirakis

6 Experimental Evaluation

Implementation Details. We implemented algorithm Nashify() in C++ program-
ming language using several advanced data types of LEDA [4]. In our imple-
mentation, we considered two initial allocations of users on paths: (1) Random
allocation: each user assigns its traffic uniformly at random on an s —¢ path and
(2) Shortest Path allocation: users are sorted according to their weights, and the
maximum weighted user among those that have not been assigned a path yet
selects a path of shortest length, with respect to the loads on the edges caused
by the users of larger weights.

Note that, in our implementation, the order in which users are checked for
satisfaction (line 3 of algorithm Nashify()) is the worst possible, i.e. we sort
users according to their weights and, at each iteration, we choose the minimum
weighted user among the unsatisfied ones to perform a greedy selfish step. By
doing so, we force the potential function to decrease as less as possible and thus
we maximize the number of iterations, so as to be able to better analyze the
worst-case behavior of the algorithm.

6.1 Experimental Setup

Networks. Figure 1 shows the ¢-layered networks considered in our experimental
evaluation of algorithm Nashify(). Network 1 is the simplest possible layered
network and Network 2 is a generalization of it. Observe that the number of
possible s — t paths of Network 1 is 3, while the number of possible s — ¢ paths
for Network 2 is 3°. Network 3 is an arbitrary dense layered network and Network
4 is the 5 x 5 grid. Network 5 is a 4-layered network with the property that layers
1,2,3 form a tree rooted at s and layer 4 comprises all the edges connecting the
leaves of this tree with .

T

Network 1 Network 2 s
° k!
<SS 0
l t i t
Network 3 Network 4 Network 5

Fig. 1. The s — t layered networks considered

Distribution of weights. For each network, we simulated the algorithm Nashify()
for n = 10,11, ...,100 users. Obviously, if users’ weights are polynomial in
n then the algorithm will definitely terminate after a polynomial number of
steps. Based on this fact, as well as on Proposition 1, we focused on instances

Efficient Convergence to Pure Nash Equilibria 211

where some users have exponential weights. More specifically, we considered
the following four distributions of weights: (a) 10% of users have weight 107/10
and 90% of users have weight 1, (b) 50% of users have weight 10"/* and 50%
of users have weight 1, (c) 90% of users have weight 10"/1% and 10% of users
have weight 1, and (d) users have uniformly at random selected weights in the
interval [1,10"/10]. Distributions (a)(c), albeit simple, represent the distribution
of service requirements in several communication networks, where a fraction of
users has excessive demand that outweighs the demand of the other users.

6.2 Results and Conclusions

Figures 2—-6 show, for each network and each one of the distributions of weights
(a)—(d), the number of steps performed by algorithm Nashify() over the number
of users (#steps/n) as a function of the sum of weights of all users W. For each
instance we considered both random and shortest path initial allocation.

1 1
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
+#steps /n (initial allocation is shortest path) K * #steps /n (initial allocation is shortest path)
10 log(W) . 10| log(W)
8 8|
6 6|
4 4]
2 M : /VJ\AI\MA/V\/\/M
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12 12,
—— #steps /n (initial allocation is random) —— #steps / n (initial allocation is random)
+ #steps / n (initial allocation is shortest path) « #steps / n (inital allocation is shortest path)
10 log(W) 10 log(W) ‘
8 8
6 6
4 4
2 2|
0 /\/\M
0 2 4 6 8 10 12 “0 > 4 6 B 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(c) (d)

Fig. 2. Experimental results for Network 1

Observe that the shortest path initial allocation significantly outperforms any
random initial allocation, no matter what networks or distributions of weights
are considered. In particular, the shortest path initial allocation appears to be
a PNE for sparse (Networks 1 and 2), grid (Network 4) and tree-like (Network
5) networks, while for the dense network (Network 3) the number of steps over
the number of users seems to be bounded by a small constant.

212

P.N. Panagopoulou and P.G. Spirakis

— #steps / n (initial allocation is random) — #steps / n (iniial allocation is random)
+ #steps /n (initial allocation is shortest path) + #steps /n (initial allocation is shortest path)
10 log(W) 10 log(W)
8 8
6 6
4 4
2 2
% 2 4 6 8 10 2 % 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
1 60) — —
— #steps / n (initial allocation is random) —— #steps/n (initial allocation is random)
+ #steps /n (initial allocation is shortest path) + #steps /n (initial allocation is shortest path)
10| log(W) 50 5 log(W) -
8 40|
6 30
4 20|
’ W b
0
0
0 5 yt rs P 0 T 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(c) (d)
Fig. 3. Experimental results for Network 2
1 14
— #steps / n (initial allocation is random) — #steps / n (iniial allocation is random)
+ #steps /n (initial allocation is shortest path) + #steps /n (initial allocation is shortest path)
1oL logW) 12 log(W)
10
8
8
6
6
4
4
2 2
a—
% 2 4 6 8 1 2 % 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
1
— #steps / n (initial allocation is random) 1200, _ _
+ #steps /n (initial allocation is shortest path) — #steps /n (initial allocation is random)
10 log(W) - + #steps /n (initial allocation is shortest path)
1000 n log(W) :
8
800|
5 600|
4 400|
2 200
o P
0 2 4 10 12 0 10 12

6 8
sum of weights W (logarithmic scale)

(c)

4 [8
sum of weights W (logarithmic scale)

(d)

Fig. 4. Experimental results for Network 3

Efficient Convergence to Pure Nash Equilibria

1
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
+ #steps / n (initial allocation is shortest path) + #steps / n (initial allocation is shortest path)
10 log(W) 10| log(W)
8| 8|
6| 6|
4 4
2 2
00 2 4 6 8 10 12 00 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
1
—— #steps / n (initial allocation is random) 1200 —
+ #steps / n (initial allocation is shortest path) — #steps / n (initial allocation is random)
. + #steps / n (initial allocation is shortest pa
10 log(W) #steps / (initial allocat hortest path)
1000 n log(W)
8|
800
6 600
4 400,
2 200
0
) 3 0 T2 %

4 6 8
sum of weights W (logarithmic scale)

(c)

2 4 6 8 10
sum of weights W (logarithmic scale)

(d)

Fig. 5. Experimental results for Network 4

— #steps /n (initial allocation is random) — #steps /n (initial allocation is random)
+#steps /n (initial allocation is shortest path) +#steps /n (initial allocation is shortest path)
10 log(W) 10 log(W)
8 8
6 6
4 4
2 w ’
0 0
0 2 q 6 8 12 0 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
1
— t#steps /n (initial allocation is random) 1200
+ #steps /n (initial allocation is shortest path) — #steps /n (initial allocation is random)
10 log(W) +tisteps /n (initial allocation is shortest path)
1000 n log(W)
§ 800
8 600
4 400
2 W 20
% 2 12 0

4 6 8 1
sum of weights W (logarithmic scale)

(c)

4 6 8 10 12
sum of weights W (logarithmic scale)

(d)

Fig. 6. Experimental results for Network 5

213

214 P.N. Panagopoulou and P.G. Spirakis

On the other hand, the behavior of the algorithm when starting with an
arbitrary allocation is sensibly worse. First note that, in this case, the fluctu-
ations observed at the plots are due to the randomization of the initial allo-
cation. On the average however we can make safe conclusions as regards the
way #steps/n increases as a function of W. For the distributions of weights
(a)—(c) it is clear that the number of steps over the number of users is asymp-
totically upper bounded by the logarithm of the sum of all weights, implying
that #steps = O(n -log(W)). Unfortunately, the same does not seem to hold for
randomly selected weights (distribution (d)). In this case however, as Figs. 2—
6(d) show, nlog(W) seems to be a good asymptotic upper bound for #steps/n,
suggesting that #steps = O(n? - log(W)).

Note that, for all networks, the maximum number of steps over the number
of users occurs for the random distribution of weights. Also observe that, for
the same value of the sum of weights W, the number of steps is dramatically
smaller when there are only 2 distinct weights (distributions (a)—(c)). Hence we
conjecture that the complexity of the algorithm does actually depend not only
on the sum of weights, but also on the number of distinct weights of the input.

Also note that the results shown in Figs. 2 and 3 imply that, when starting
with an arbitrary allocation, the number of steps increases as a linear function
of the size of the network. Since the number of s — ¢ paths in Network 2 is
exponential in comparison to that of Network 1, we would expect a significant
increment in the number of steps performed by the algorithm. Figures 2 and 3
however show that this is not the case. Instead, the number of steps required for
Network 2 are at most 5 times the number of steps required for Network 1.

Summarizing our results, we conclude that (i) a shortest path initial alloca-
tion is a few greedy selfish steps far from a PNE, amplifying Conjecture 1, while
(ii) an arbitrary initial allocation does not assure a similarly fast convergence to
a PNE, however Conjecture 1 seems to be valid for this case as well, (iii) the size
of the network does not affect significantly the time complexity of the algorithm,
and (iv) the worst-case input for an arbitrary initial allocation occurs when all
users’ weights are distinct and some of them are exponential.

References

1. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equi-
libria. Proc. of the 36th ACM Symp. on Theory of Computing (STOC 04), 2004.

2. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. 31st Inter-
national Colloquium on Automata, Languages and Programming (ICALP’04), pp.
593-605, 2004.

3. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
Structure and Complexity of Nash Equilibria for a Selfish Routing Game. Proc.
of the 29th International Colloquium on Automata, Languages and Programming
(ICALP 02), Springer-Verlag, 2002, pp. 123-134.

4. Mehlhorn, K., Naher, S.: LEDA — A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

Efficient Convergence to Pure Nash Equilibria 215

. Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and
Economic Behavior 13 (1996), 111-124.

. Monderer, D., Shapley, L.: Potential Games. Games and Economic Behavior,
14:124-143, 1996.

. Nash, J. F.: Equilibrium Points in N-person Games. Proc. of National Academy of
Sciences, Vol. 36, pp. 4849, 1950.

. Rosenthal, R. W.: A Class of Games Poseessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory 2, pp. 65-67, 1973.

New Upper Bound Heuristics for Treewidth*

Emgad H. Bachoore and Hans L. Bodlaender

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract. In this paper, we introduce and evaluate some heuristics to find an
upper bound on the treewidth of a given graph. Each of the heuristics selects the
vertices of the graph one by one, building an elimination list. The heuristics differ
in the criteria used for selecting vertices. These criteria depend on the fill-in of a
vertex and the related new notion of the fill-in-excluding-one-neighbor. In several
cases, the new heuristics improve the bounds obtained by existing heuristics.

1 Introduction

For several applications involving graphs, it is of great interest to have good algo-
rithms that compute or approximate the treewidth of a graph and its corresponding
tree decomposition. The interest in these notions, and some other related notions such
as branchwidth, branch decomposition, pathwidth, path decomposition, and minimum
fill-in arose because of their theoretical significance in (algorithmic) graph theory, and
because a tree decomposition of small width of a graph enables us to solve many graph
problems in linear or polynomial time. Among these problems are many well-known
combinatorial optimization problems such as: graph coloring, maximum independent
set, and the Hamiltonian cycle problem. Nowadays, there are several 'real world’ ap-
plications that use the notion of tree decomposition or branch decomposition to find
solutions for the problems at hand. These come from many different fields, such as ex-
pert systems [15], probabilistic networks [4], frequency assignment problems [12, 13],
telecommunication networks design, VLSI-design, natural language processing [10],
and the traveling salesman problem [9].

The problem of computing the treewidth of a graph is NP-hard [2]. Therefore, for
computing the treewidth of a graph, we have to use an exact but slow method like
branch and bound, algorithms that work only for specific classes of graphs, or resort
to algorithms that only approximate the treewidth. In the past years, several heuristics
for treewidth have been designed. We can divide those heuristics into two categories:
those that find upper bounds for the treewidth, and those that find lower bounds for the
treewidth. This paper concentrates on upper bound heuristics. An overview of results
on computing the treewidth can be found in [3].

Some of the heuristics for finding an upper bound for the treewidth are based on
algorithms that test whether a given graph is triangulated. These are Maximum Car-
dinality Search, Lexicographic Breadth First search, Minimum Degree and Minimum

* This work has been supported by the Netherlands Organization for Scientific Research NWO
(project TACO: *Treewidth And Combinatorial Optimization’).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 216-227, 2005.
© Springer-Verlag Berlin Heidelberg 2005

New Upper Bound Heuristics for Treewidth 217

Fill-in algorithms. Other heuristics are based on other ideas, e.g. the Minimum Separat-
ing Vertex Set algorithm (cf. [1,7, 11]).

In this paper, we present a number of heuristic methods to find upper bounds for the
treewidth of the graph. Each of our heuristics is based on constructing a triangulation
of the graph from an elimination ordering of the vertices. These elimination orderings
are constructed by repeatedly selecting a vertex and then adding the so-called fill-in
edges between its neighbors. The various heuristics differ in the criteria of the selection
of the vertices. These criteria, basically, depend on two concepts: the number of edges
that must be added between the neighbor vertices of a vertex to form a clique, and the
number of edges that must be added between all neighbor vertices of a vertex except
one to form a clique between them.

We have implemented the algorithms proposed in this paper, and tested them on a
set of 32 graphs, taken from instances of probabilistic networks, frequency assignment
and vertex coloring. We compared the results of these algorithms with those of other
heuristic methods. We observed that in many cases our algorithms perform well.

2 Definitions and Preliminary Results

In this section, we give the definitions of the most frequently used concepts and notions
in this paper. Let G = (V, E) be an undirected graph with vertex set V' and edge
set F. A graph H is a minor of graph G, if H can be obtained from G by zero or
more vertex deletions, edge deletions, and edge contractions. Edge contraction is the
operation that replaces two adjacent vertices v and w by a single vertex that is connected
to all neighbors of v and w.

We denote the set of neighbors of vertex v by N(v) = {w € V|{v,w} € E}, and
the set of neighbors of v plus v itself by N[v] = N(v) U {v}. In the same manner
we define N°[v] = {v}, N“*1[v] = N[Ni[v]], Nt (v) = N+ [o] \ Ni[v]. We can
extend the above definition to a set of vertices instead of one vertex. Suppose that S
is a set of vertices, then N°[S] = S, N*F1[S] = N[N?[S]], NT1(S) = NFL[S]\
N'[S], N[S] = U,es N[v], N(S) = N[S]\ S, i € N. Let degree(v) = |[N(v)| be
the degree of vertex v. Given a subset A C V of the vertices, we define the subgraph
induced by Atobe G4 = (A, E4), where E4 = {{z,y} € Elx € Aandy € A}. A
subset A C V of r vertices is an r-almost-clique if there is a v € A such that A — {v}
forms a clique. A vertex v in G is called simplicial, if its set of neighbors N (v) forms
a clique in G. A vertex v in G is called almost simplicial, if its neighbors except one
form a clique in G, i.e., if v has a neighbor w such that N (v) — {w} is a clique. A graph
G is called triangulated (or: chordal) if every cycle of length four of more possesses a
chord. A chord is an edge between two nonconsecutive vertices of the cycle. A graph
G = (V,E) is a subgraph of graph H = (W, F)if V. C W and E C F. A graph
H = (V, F) is a triangulation of graph G = (V, E), if G is a subgraph of H and H is
a triangulated graph.

A linear ordering of a graph G = (V, E) is a bijection f : V — {1,2,--- [|V|}.
A linear ordering of the vertices of a graph G, 0 = [vq,- - ,v,] is called a perfect
elimination order (p.e.o.) of G, if for every 1 < i < n, v; is a simplicial vertex in
Glv1, -+ ,vp), ie., the higher numbered neighbors of v; form a clique. It has been

218 E.H. Bachoore and H.L. Bodlaender

shown in [8] that a graph G is triangulated, if and only if G has a p.e.o. Eliminating a
vertex v from a graph G = (V, E) is the operation that first adds an edge between every
pair of non-adjacent neighbors of v, and then removes v and its incident edges.

A tree decomposition of the graph G = (V, E) is a pair (X, T) inwhich T = (I, F)
atree, and X = {X;|i € I} a collection of subsets of V, one for each node of T, such
that | J,.; X; =V, forall (u,v) € E, there exists an i € I with u,v € Xj, and for all
i,7,k € I:if j is on path from i to £ in T', then X; N X}, C X ;. The width of the tree
decomposition ((I, F'),{X;|i € I}) is maz;c1|X; — 1|. The treewidth of a graph G is
the minimum width over all tree decompositions of G.

Lemma 1. (See Bodlaender [5].)

1. For every triangulated graph G = (V, E), there exists a tree decomposition (X =
{X;|li € I},T = (I, F)) of G, such that every set X; forms a clique in G, and for
every maximal cliqgue W C 'V, there exists ani € I with W = X;.

2. Let (X = {X;|i € I},T = (I, F)) be a tree decomposition of G of width at most
k. The graph H = (V,EUE'), with E' = {{v,w}| 3i € I : v,w € X,}, obtained
by making every set X; a clique, is triangulated, and has maximum clique size at
most k + 1.

3. Let (X ={X;li € I}, T = (I, F)) be a tree decomposition of G, and let W CV
form a clique in G. Then there exist ani € I with W C X.

Lemma 2. (See Shoikhet and Geiger [17].)

For triangulated graphs, tree decompositions exist where the nodes are exactly the max-
imal cliques of the graph. Such tree decompositions are called clique trees. The width
of a triangulated graph T is max ek (1) (| K| — 1), where K (T') is the set of maximal
cliques of T.

3 Upper Bound Heuristics for Treewidth

In this section we present some heuristic methods to find upper bounds for the treewidth
of a given graph, and the corresponding tree decompositions. Basically, these methods
depend on two concepts: The first one is the number of edges that must be added be-
tween the neighbors of a vertex x to make it simplicial, i.e., the neighborhood of that
vertex turn into a clique. We call this the fill-in of x.

Sfill-in(x) = |[{{v,w}v,w € N(z),{v,w} & E}|

The second concept is very similar to the first one, but here we find the minimum
number of edges which when added between pairs of neighbors of a vertex z, turn x into
an almost simplicial vertex, i.e., by adding these edges to the graph, the neighborhood
of that vertex will turn into an almost clique. We call this parameter the fill-in of x
excluding one neighbor fill-in-excl-one(x)

fill-in-excl-one(x) = min e nx)|{{v, w}lv,w € N(x) — {z},{v,w} & £}

A graph with |V| vertices has |V|! (permutations of |V|) linear ordering. For each linear
ordering o of (G, we can build a triangulation H,, of G, such that o is the p.e.o. of H,,

New Upper Bound Heuristics for Treewidth 219

in the following way. For ¢ = 1,--- ||V, in that order, we add an edge between every
pair of non-adjacent neighbors of v; that are after v; in the ordering, v; is the i*" vertex
in 0. One can observe that ¢ is a p.e.o. of the resulting graph H,. As H,, is triangulated,
its treewidth is one smaller than its maximum clique size, which equals the maximum
number of neighbors of v over all vertices v that are after v in the linear ordering o.
One can construct from H,, a tree decomposition of H, and of G with width exactly
this maximum clique size minus one. It is also known that there is at least one linear
ordering of G where we obtain the exact treewidth of GG in this way [5]. This suggests
the following general scheme for heuristics for treewidth.

set G — G;i+—1; 0 — ();
while G’ is not the empty graph
select according to some criteria a vertex v from G’;
eliminate v; /* remove v and turn its neighbors into a clique */
add v to position in the ordering o;
seti «— i+ 1;
{Now o is a linear ordering of V.}
construct triangulation H,, of G and the corresponding tree decomposition.

Instead of constructing H,, after o is constructed, we also can construct H, and the
corresponding tree decomposition while o is constructed. The width of the tree decom-
position thus obtained is the maximum over all vertices v of the number of neighbors
of v in G'. We call a graph G’ encountered during the algorithm a temporary graph.
A linear ordering of G, used in this way, is called often an elimination scheme. Sev-
eral heuristics are of this type. Most known are the Minimum Fill-in heuristic, and the
Minimum Degree heuristic. In these, we repeatedly select the vertex v with minimum
fill-in in G’, or minimum degree in G’ respectively. These two heuristics appear to be
successful heuristics for treewidth; they often give good bounds and are fast to com-
pute. The success of these heuristics encouraged us to develop other heuristics based
on similar principles. Our heuristics are inspired by results on preprocessing graphs for
treewidth. In [4], reduction rules are given that are safe for treewidth. Here, such rules
rewrite a graph G to a smaller graph G’, and possibly update a variable low that gives a
lower bound on the treewidth of the original graph. In [4], the notion of safe rule was
introduced. The safe rule rewrites a graph to a smaller one, and maintains a lower bound
variable [ow, such that the maximum of low and the treewidth of the graph at hand stays
invariant, i.e., rule R is safe, if for all graphs G, G’, and all integers low, low’, we have

(G, low) —g (G',low") = maz(treewidth(QR),low) = max(treewidth(G'), low").

Thus, the treewidth of the original graph is known when we know the treewidth of the
reduced graph and low. Amongst others, the following two rules were shown to be safe
for the treewidth in [4].

The Simplicial Reduction Rule (SRR):

let v be a simplicial vertex of degree(v) > 0.
remove v.

set low to mazx(low, degree(v)).

220 E.H. Bachoore and H.L. Bodlaender

The Almost Simplicial Reduction Rule (ASRR):
let v be an almost simplicial vertex of degree(v) > 2.
if low > degree(v) then eliminate v.

The safeness of the simplicial reduction rule tells us that if a vertex v has fill — in
zero, then selecting that vertex as the next one in the elimination ordering will not
cause the remaining graph to have a treewidth that is larger than necessary for this
elimination ordering. It can be seen as a motivation for the Minimum Fill-in Heuristic,
where we select vertices with minimum fill-in. Similarly, the almost simplicial reduc-
tion rule can be seen as motivation to look at the fill — in — excl — one. If a vertex
has fill — in — excl — one of zero, then selecting that vertex as the next vertex in the
elimination ordering will in many cases not cause the treewidth caused by the formed
elimination ordering to be larger than necessary, unless the degree of the almost sim-
plicial vertex is more than the treewidth of the original graph. With a small twist to the
terminology, we say that eliminating v is safe (in a graph G), if the choice of v in the
heuristic scheme presented above can lead to a tree decomposition whose width equals
the treewidth of GG. Motivated by these observations, we designed new heuristics for
treewidth that are given below.

3.1 Enhanced Minimum Fill-in (EMF):

The motivation for the Enhanced Minimum Fill-in algorithm is based on the safe-
ness of eliminating simplicial vertices and almost simplicial vertices of degree at most
the treewidth. Note that when we have vertices x and y with fill-in-excl-one(y) = 0,
degree(y) = low (for some lower bound low on the treewidth of the input graph),
fill-in(x) > 1, and fill-in(y) > fill-in(x), then y appears to be the best choice for elimina-
tion (as this is safe); the Minimum Fill-in heuristic, however, selects .

For faster implementation of the algorithms, we observe that in many cases we do
not have to recompute the values of fill-in and fill-in-excl-one of every vertex in the
temporary graph after we eliminate a vertex from it.

Lemma 3. Let v be a simplicial vertex in graph G, G' = G[V — {v}] be the graph
obtained by eliminating v, and fill-ing(v) be the fill-in of vertex v in graph G. For
all w ¢ Nv], we have fill-ing(w)= fill-ing' (w), fill-in-excl-onec(w)= fill-in-excl-
onegr(w).

Therefore, when we eliminate a simplicial vertex v from a graph, and we want to find
the next vertex in the graph with minimum fill-in or minimum fill-in-excl-one, we need
only to recompute fill-in and fill-in-excl-one for neighbors of v, (N!(v)). For instance,
if we eliminate vertex 1 from the graph shown in Figure 1(a) and we want to find the
next vertex with minimum fill-in or minimum fill-in-excl-one in the graph, then we need
only to recompute the fill-in and fill-in-excl-one for vertices 2, 3 and 4.

Similarly, Lemma 4 shows that if we eliminate a non simplicial vertex v from a
graph, and we want to find the next vertex in the graph with minimum fill-in or mini-
mum fill-in-excl-one, then only the fill-in and fill-in-excl-one of the vertices in N?(v)
can change. For instance, if we eliminate vertex 1 from the graph in Figure 1 (b) and

New Upper Bound Heuristics for Treewidth 221

Fig. 1

we want to find the next vertex with minimum fill-in or minimum fill-in-excl-one, then
we need to recompute the fill -in and fill-in- excl-one for vertices 2, 3, 4 and 5 only.

Lemma 4. Let v be a vertex in graph G that is not simplicial, G' = G[V — {v}]
be the graph obtained by eliminating v, and fill-ing(v) be the fill-in of v in G. For
all w ¢ N2[v], we have fill-ing(w)= fill-inc' (w), fill-in-excl-onec(w)= fill-in-excl-
oneg: (w).

Observation. Many of the heuristics have slightly different implementations that can
give different results on the same graph. For instance, consider the Minimum Fill-in
heuristic. If there is more than one vertex that has minimum fill-in, the method does
not specify which of these has to be selected and placed in the elimination ordering.
For instance, there could be some arbitrary numbering of the vertices, and the specific
implementation could choose the lowest or the highest numbered vertex with minimum
fill-in. It seems better to use criteria that guide towards a better upper bound for the
treewidth for such a selection. Using other criteria apart from minimum fill-in can be
seen to give better bounds for several inputs. Still, in each case, there are graphs for
which we do not find the optimal treewidth with such heuristics; given the NP-hardness
of the problem, we also cannot expect to do so.

We would like to remark here that if we want to fully describe an upper bound algo-
rithm, we must specify details like the method of representing the graph, specifically,
because of matters like when vertices have the same fill-in, in which manner such a
tie is broken. If we do not give such specifications, there is possibility to get different
results from the same algorithm. Moreover, it becomes more difficult to compare the
results of different methods.

In the proposed Enhanced Minimum Fill-in algorithm, we first select vertices whose
elimination is safe, i.e., we select vertices that are simplicial (have fill-in 0), or almost
simplicial (have fill-in-excl-one 0) and their degrees are at most the lower bound (low)
on the treewidth of the graph. Only if no safe vertex is available, we select the ver-
tex of minimum fill-in. Furthermore, we incorporated Lemma 3 and Lemma 4 in the
algorithm.

3.2 Minimum Fill-in Excluding One Neighbor (MFEO1)

Using the ideas behind the EMF heuristic and additional techniques, we developed a
more advanced heuristic. The idea is as follows: first, we test whether the graph contains

222 E.H. Bachoore and H.L. Bodlaender

simplicial vertices, or almost simplicial vertices with degree at most the lower bound
for the treewidth of the graph. If we find such vertices, we process them as in EMF. If
the graph does not include such simplicial or almost simplicial vertices anymore, then
we do the following test:

let H(W, F') be the temporary graph of a given graph G(V, E),
p be a vertex with minimum fill-in in H,
min-fill-in — fill-in(p),
local-min-fill-in — MaxInt,
local-min-fill-in-excl-one «— MaxInt,
for all g € Wandq # p
if((fill-in-excl-one[q] < min-fill-in) and (degreelq] = low))
then
if((fill-in-excl-one[q] < local-min-fill-in-excl-one) or
((fill-in-excl-one[q] = local-min-fill-in-excl-one) and
(fill-in[q] < local-min-fill-in)))
then
p—=q
local-min-fill-in — fill-in[q],
local-min-fill-in-excl-one < fill-in-excl-one[q],;

After this test, if there is a vertex ¢ amongst W that full fills these conditions, then
that vertex becomes the next eliminating vertex, otherwise, vertex p will be eliminated.
However, if the graph contains more than one vertex g with such properties then the
vertex with minimum fill-in-excl-one amongst these is eliminated first. But, if still there
is more than one vertex that satisfies the last condition, then the vertex with minimum
fill-in amongst these should be selected first.

3.3 The Minimum Fill-in Excluding One Neighbor Vertex (MFEQO?2)

The MFEO?2 heuristic is a modification of MFEOI1 heuristic, where ties are broken
using the fill-in and fill-in-excl-one in the other order. If more than one vertex q satisfies
the two conditions, namely, fill-in-excl-one(q) < fill-in(p) and degree(q) < low, then
the vertex with minimum fill-in amongst these is eliminated first. But, if still there is
more than one vertex that satisfies the last condition, then the vertex with minimum
fill-in-excl-one amongst these should be processed first.

3.4 The Ratio Heuristic, Version 1 (Ratiol)

In the two versions of the Ratio heuristic, we use different rules for when vertices of
small fill-in-excl-one can be selected for elimination before vertices of minimum fill-in.
Again, we first select simplicial vertices, or almost simplicial vertices whose degree is
at least the lower bound for the treewidth. If there are no such vertices in the temporary
graph, we proceed now as follows: In the Ratio heuristic, version 1, a vertex v can be
selected when its fill-in-excl-one is smaller than minimum fill-in, its degree is at most
the lower bound for the treewidth, and it satisfies the following condition. Let H(W, F)

New Upper Bound Heuristics for Treewidth 223

be a temporary graph of graph G(V, E). Select a vertex p of minimum fill-in. Compute
r1(w) = fill-in(w)/fill-in(p), and ro(w) = degree(w)/degree(p). We now require that
ri(w) < ra(w) for w # p to be a candidate for selection at this point. If we have
more than one such candidate, we select from these a vertex with minimum difference
between 71 and 7o, (1, — 72).

The motivation for the Ratio heuristic, version 1, is that we want to select vertices
for which elimination creates a large clique while only few fill-in edges are added. Let
us illustrate the method with the following examples: Let p be a vertex of minimum fill-
in and w be a vertex whose fill-in-excl-one is less than minimum fill-in and its degree
is less than the value of the lower bound for the treewidth.

3.5 The Ratio Heuristic, Version 2 (Ratio 2)

The second variant of the Ratio heuristic is similar to the first one, with the following
difference. For each vertex w € W, we set r(w) = fill-in(w)/degree(w), (degree(w) >
1, otherwise w is simplicial). When there are no simplicial vertices and no almost sim-
plicial vertices with degree at most the treewidth lower bound, we select the vertex w
whose ratio 7(w) is smallest.

4 Experimental Results

The algorithms described in the previous section and some other algorithms described
in [7, 11] have been implemented using Microsoft Visual C++ 6.0 on a Window 2000
PC with a Pentium III 800 MHz processor. The algorithms were tested on two sets
of graphs. The first one includes 18 graphs from real-life probabilistic networks and
frequency assignment problems [11]. The second set includes 14 graphs from a DI-
MACS coloring benchmark [7]. The selected graphs have different number of vertices
and edges. Also, the differences between the known upper bounds and lower bounds
for the treewidth of many of those graphs are noticeable. Thus, it is possible to obtain
different results for the upper bound of the same graph by using different heuristics.

In order to be able to achieve good conclusions from this analysis, we analyze our
algorithms in different ways. First, we compare the results of the implementations of
different methods that have been introduced in this paper. The second part of the evalua-
tions compares the heuristics introduced in this paper with known heuristics. The tables
use the following terminology. The columns with the upper bounds on the treewidth are
labeled as ub. The column for processing times in seconds are labeled as t. The pro-
cessing times are rounded of to the nearest integer. The values in column low are not
necessarily the best known lower bounds on the treewidth, but by using these values
with our heuristics we obtained the best upper bounds.

4.1 Comparison Between the Heuristics Introduced in This Paper

In Section 3, we have introduced five methods for finding upper bounds for the treewidth
of the graph; in addition we implemented the Minimum Fill-in heuristic (MF) and the

224 E.H. Bachoore and H.L. Bodlaender

Minimum Degree Fill-in (MDFI). The results of implementing these algorithms on dif-
ferent graphs are given in the following tables. Table 1 and Table 2 (columns 6-10) show
a comparison between different methods illustrated in this paper from the point view of
their best upper bound values and the processing time used to find these upper bounds.
Table 1 consists of instances of probabilistic networks and frequency assignment prob-
lems. Table 2 gives graphs from the DIMACS coloring benchmark. The results for the
D-LB heuristic in Table 2 were obtained from [7]. D-LB is shown in this table because
[7] gives experimentel results for this set of graphs and not for those used in Table 3.
We notice clearly from the results in these tables that in general the upper bounds ob-
tained by MFEOI1 and RATIO2 are better than those obtained by the other methods.
The main differences between the results obtained by MFEO1 and those obtained by
RATIO2 are as follows:

— The upper bounds obtained by using the MFEOI1 heuristic on graphs of probabilis-
tic networks and frequency assignment instances in Table 1 are better than or equal
to those produced by any other heuristic in that table. However, this is not the case
for some of the instances from the DIMACS coloring benchmark, see Table 2. We
notice when we consider Table 1 that the upper bounds for some graphs are better
when using RATIO2 than those obtained when using MFEOI1.

— The upper bounds obtained by using the MFEO1 are more stable, namely, always
better than or equal to that produced by any other heuristic, except for RATIO2.
RATIO2 does not have such a “stable behavior”.

Table 1

Graphname Size low Heuristic
~ EMF MFEOl MFEO2 RATIOl RATIO2
V] |E| ub t ub t ub t ub t ub t
alarm 37 65 2 4 0 4 0 4 0 4 0 4 0
barley 48 126 37 0 7 0 7 0 7 0 7 0
boblo 221 326 2 3 0 3 0 3 0 3 8 3 0
celar06_pp 100 350 11 11 O 11 0 11 0 11 0 11 0
celar07_pp 200 817 16 16 1 16 1 16 1 16 1 16 1
celar09_pp 340 1130 7 16 4 16 4 16 3 16 49 16 4
graphO5_pp 100 416 11 26 0 25 1 25 1 25 0 26 1
midew 35 80 2 4 0 4 0 4 0 4 0 4 0
muninl 189 366 311 0 11 1 11 1 11 5 11 1
oesoca_hugin 67 208 9 11 0 11 0 11 0 11 0 11 0
oow_bas 27 54 2 4 0 4 0 4 0 4 0 4 0
oow_solo 40 87 4 6 0 6 O 6 0 6 0 6 0
oow_trad 33 72 4 6 O 6 0 6 0 6 0 6 0
pigs 441 806 310 6 10 6 10 6 10 123 10 6
ship-ship 50 114 4 8 0 8 0 9 0 8 0 9 0
vsd-hugin 38 62 2 4 0 4 0 4 0 4 0 4 0
water 32 123 9 10 0 9 0 10 O 9 0 10 0
wilson-hugin 21 27 2 3 0 3 0 3 0 3 0 3 0

New Upper Bound Heuristics for Treewidth 225

Table 2
Graphname Size low Heuristic
~ EMF MFEOI MFEO2 RATIOI RATIO2 DLB
V| |E| ub t ub t ub t ub t ub t ub
anna 138 986 11 12 0 12 0 12 0 12 0 12 0 12
david 87 812 11 13 0 13 0 13 0 13 0 13 0 13

dsjc125.1 125 736 17 65 6 64 6 64 6 64 6 66 6 67

dsjc125.5 125 3891 55 111 35110 36 110 37 110 36 109 38 110

dsjc250_1 250 3218 3 177 451 177 451 177 451 177 453 177 441 176 3
games120 120 1276 10 39 2 39 2 42 1 41 2 38 2 41

LE450_5A 450 5714 3 3157630 310 13694 315 13437 31515308 304 13301 323 274
mulsol.i4 175 3946 32 32 23 32 27 32 26 32 26 32 28 32 14
myciel4 23 71 10 11 0 10 0 10 0 10 0 10 0 11 0
myciel5 47 236 8 21 0 20 1 20 0 20 0 20 0 20 0
myciel6 95 755 20 35 2 35 1 35 2 35 1 35 2 35 2
myciel7 191 2360 31 66 31 66 31 66 32 66 32 66 28 70 29
queen5_5 25 320 12 18 0 18 0 18 0 18 0 19 0 18 0
schooll 38519095 80 2255791 225 5742 225 5738 225 6390 209 3877 242274

N WA WO =~

4.2 Comparison Between Heuristics Introduced in This Paper with Known
Heuristics

Tables 2, 3 and 4 make a second type of comparison. Here, we compare the heuristics
introduced in this paper with a number of existing heuristics from the scientific litera-
ture. The data for the existing heuristics were taken from [7, 11]. Table 2 gives the upper
bounds found by using D-LB [7] and those found by using the heuristics introduced in
this paper, with the processing time used by each heuristic. Table 3 compares between
the MFEOI heuristic and the heuristics that have been described in[11]. The first five
are based on building elimination order lists, and respectively use two variants of Lexi-
cographic Breadth First Search (LEX-P and LEX-M), the Maximum Cardinality Search
(MCS), the Minimum Fill-in heuristic (MF) and the Minimum Degree heuristic (MD:
the vertex of minimum degree in the temporary graph is chosen). The last one is the
Minimum Separating Vertex Sets heuristic (MSVS) from Koster [14], where a trivial
tree decomposition is stepwise refined with help of minimum vertex separators.

We conclude from the results of Tables 2, 3 and 4 that usually the best upper bounds
were achieved by the MFEOI heuristic. Table 4 shows how often each of the heuristics
MFEO1, LEX-P, LEX-M, MF, MCS, and D-LB gives the best result of all seven on
the 18 graphs from probabilistic network and frequency assignment instances, and 14
graphs from DIMACS vertex-coloring instances. We can see that out 18 graphs of the
first set of graphs in Table 3, the upper bound of 2 graphs became better by using
MEFEOL1 than that produced by the heuristics introduced in [11] together, the upper
bounds of 14 graphs remain equal to the best upper bound of them, and no graph from
this set of graphs its upper bound became worse by MFEO1 than that produced by those
heuristics. As well, by applying the MFEOL1 on 14 graphs of the second set of graphs
(DIMACS vertex-coloring instances), the upper bounds of 6 graphs became better than
that produced by D-LB (introduced in [7]), upper bounds of 7 graphs remain equal

226 E.H. Bachoore and H.L. Bodlaender

Table 3
Graphname Size Heuristic Name
MFEO!l LEX-P LEX-M MF MDFI MCS MSVS
[V| |E| ub tub tub tub t ub t ub t ub t
alarm 37 65 4 0 4 0 4 0 4 0 40 40 4 O
barley 48 126 7 o 7 o0 7 o0 7 0 70 70 7 0
boblo 221 326 3 0 4 1 4 10 3 13 30 31 3 O
celar06_pp 100 350 11 0 11 0 11 211 1 11 0 110 11 O
celar07_pp 200 817 16 1 19 2 18 16 16 10 18 0 18 2 18 3
celar09_pp 340 1130 16 4 19 0 18 0 16 98 18 0 190 18 O
graphO5_pp 100 416 25 129 327 11 26 1 28 0 293 26 5
midew 35 80 4 O 4 0 4 0 4 0 40 40 4 O
muninl 189 366 11 1 15 2 13 20 11 9 11 0 203 11 2
oesoca_hugin 67 208 11 0 12 0 11 o1 011 0 110 11 O
oow_bas 27 54 4 0O 4 0 4 0 4 0 40 50 4 0
oow_solo 40 8 6 0 6 0 6 0 6 0O 6 0 60 6 O
oow_trad 33 726 0 6 0 6 0 6 0 6 0 60 6 O
pigs 441 806 10 6 19 14 18 161 10190 10 O 158 15 9
ship-ship 50 114 8 0 9 0 9 0 8 0 80 99 9 0
vsd-hugin 38 62 4 0 4 0 4 0 4 0 40 50 4 O
water 32 123 9 o010 010 O 9 0 11 0 100 10 O
wilson-hugin 21 27 3 o 3 0 3 0 3 O 30 30 3 O
Table 4
S Heuristic =~ Number of graphs where the upper bound produced by the heuristic
name is the only best one is equal the best one is worse than the best one ~ Sum
set 1 set 2 set 1 set 2 set 1 set 2 set 1 set2
1 MFEO1 2 6 16 7 0 1 18 14
2 LEX-P 0 6 12 18
3LEX-M 0 6 12 18
4 MF 0 3 15 18
5 MD 0 11 7 18
6 MCS 0 5 13 18
7 DLB 0 1 7 6 14

to the best upper bound, and only for one graph, the upper bound obtained by D-LB
method is better than that obtained by MFEO1. Table 4 shows a comparison between
MFEOI1 and each of these seven heuristics. It gives number of graphs when MFEOI1
gives a better, equal, or worse upper bounds than that produced by every heuristics
introduced in [7, 11]. The processing time of the MFEO1 heuristic is relatively close to
the processing time of other heuristics in spite of the fact that this algorithm uses O(n*)
time in the worst case, while some of other heuristics are of O(n?) time complexity.
Although there are only two cases in Table 1 where the MFEO! heuristic gives a bound
that is better than each of other heuristics (namely, for graphO5_pp and water), we can
see that it gives in many cases the best known value.

New Upper Bound Heuristics for Treewidth 227

In several cases, this is the exact treewidth of the graph. Our recent (unpublished)

work on branch and bound algorithms for treewidth has shown that. In many cases, the
heuristic gives considerable improvements compared with individual other heuristics.
For some of the graphs we do not know the exact treewidth and cannot determine yet
how much the upper bounds differ from the exact values.

References

1.

(o)

[e e}

10.

11.

12.

13.

14.

15.

16.

17.

E. Amir. Efficient approximation for triangulation of minimum treewidth. Proceedings of the
17th Conference on Uncertainty in Artificial Intelligence, UAI 2001, pages 7-15, Seattle,
Washington, USA, 2001.

. S. Amborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a

k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277-284, 1987.

. H. L. Bodlaender. Discovering treewidth. Proceedings SOFSEM 2005: Theory and Practice

of Computer Science, pages 1-16, Liptovsky Jan, Slovak Republic, 2005. Springer Verlag,
Lecture Notes in Computer Science, vol. 3381.

. H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der Graag. Pre-

processing for triangulation of probabilistic networks. In J. Breese and D. Koller, editors,
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 32-39,
San Francisco, 2001. Morgan Kaufmann Publishers.

. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Com-

puter Science, 209:1-45, 1998.

. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2): 1-21,1993.
. F. Clautiaux, J. Carlier, A. Moukrim, and S. Negre. New lower and upper bounds for graph

treewidth. Proceedings of the Second International Workshop on Experimental and Efficient
Algorithms, pages 70-80, Ascona, Switzerland, 2003. Springer Verlag, Lecture Notes in
Computer Science, vol. 2647.

. M. C. Columbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, Inc., 1980.
. W. Cook and P. D. Seymour. Tour Merging via branch-decomposition. Informs J. on Com-

puting, 15:233-248, 2003.

A. Kornai and Z. Tuza. Narrowness, pathwidth, and their application in natural language
processing. Discrete Application Mathematics, 36:87-92, 1992.

A. M. C. A. Koster, H. L. Bodlaender, and S. van Hoesel. Treewidth: Computational exper-
iments. In Hajo Broersma, Ulrich Faigle, Johann Hurink, and Stefan Pickl (editors), Elec-
tronic Notes in Discrete Mathematics, volume 8. Elsevier Science Publishers, 2001.

A. M. C. A. Koster, C.P.M. van Hoesel, and A.-W.J. Kolen. Solving frequency assignment
problems via tree-decomposition. Technical report RM 99/011, Maastricht University, 1999.
Available at http://www.zib.de/koster/.

A. M. C. A. Koster, C.P.M. van Hoesel, and A.W.J. Kolen. Lower bounds for minimum
interference frequency assignment problems. Ricerca Operativa, 30(94-95): 101-116, 2000.

A. M. C. A. Koster. Frequency Assignment ? Models and Algorithms. PhD thesis, Maastricht
University, Maastricht, the Netherlands, 1999.

S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. The Journal of the Royal Statistical Soci-
ety, Series B (Methodological), 50:157-224, 1988.

D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM Journal on Computing, 5:266-283, 1976.

K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations. Pro-
ceeding National conference on Artificial Intelligence (AAAI’97), pages 185-190. Morgan
Kaufmann, 1997.

Accelerating Vickrey Payment Computation in
Combinatorial Auctions for an Airline Alliance*

Yvonne Bleischwitz! and Georg Kliewer?

! International Graduate School of Dynamic Intelligent Systems, University of Paderborn,
Fiirstenallee 11, 33102 Paderborn
2 University of Paderborn, Fiirstenallee 11, 33102 Paderborn
{yvonneb, Georg.Kliewer}@upb.de

Abstract. Among all the variations of general combinatorial auctions, the Vick-
rey auction is essentially the only incentive-compatible auction. Furthermore, it
is individual rational and weakly budget-balanced. In many cases these properties
are very desirable. However, computing the winners and their payments in a Vick-
rey auction involves solving several NP-complete problems. While there have
been many approaches to solve the winner determination problem via search, this
search has not been extended to compute the Vickrey payments. The naive ap-
proach is to consecutively solve each problem using the same search algorithm.
We present an extension to this procedure to accelerate the computation of Vick-
rey payments using a simple backtrack algorithm. However, our results can be
applied to sophisticated branch-and-bound solvers as well. We test our approach
on data evolving from a Lufthansa flight schedule. Data of this type might be of
interest, since authentic data for combinatorial auctions is rare and much sought
after. A remarkable result is that after solving the winner determination problem
we can provide bounds for the remaining problems that differ from the optimal
solution by only 2.2% on average. We as well manage to obtain a rapid speedup
by tolerating small deviations from the optimal solutions. In all cases, the actual
deviations are much smaller than the allowed deviations.

1 Introduction

Many recent applications of auctions require several non-identical goods to be auc-
tioned off. This setting is quite complicated, since bidders are often interested in certain
subsets of items and want to ensure to get exactly these subsets with no missing or addi-
tional items. However, since there is an exponential number of possible combinations of
items, such auctions are often computationally intractable. In previous work, only a few

* This work was partially supported by the German Science Foundation (DFG) priority pro-
gramme 1126 Algorithmics of Large and Complex Netzworks, project Integration of network
design and fleet assignment in airline optimization under grant MO 285/15-2, by the Future
and Emerging Technologies programme of EU under EU Contract 001907 DELIS, Dynami-
cally Evolving, Large Scale Information Systems, and by the Future and Emerging Technolo-
gies programme of EU under EU Contract 33116 FLAGS, Foundational Aspects of Global
Computing Systems.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 228-239, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Accelerating Vickrey Payment Computation 229

number of combinatorial auctions were employed due to this burden. On the other hand,
combinatorial auctions have very desirable properties. In a scenario where the items are
just auctioned off one by one a bidder cannot be ensured that he gets the whole subset
of items he desires. This drawback is abolished allowing combinatorial bids. In an auc-
tion that allocates flights between airline alliance partners this is essential because of
connecting flights and logistic considerations.

It is NP-complete to determine the optimal allocation for a combinatorial auction
[17], but heuristics and tractable subcases have been analyzed [9, 12, 15, 8, 5]. A num-
ber of exponential search algorithms have been employed while trying to reduce the
search overhead as much as possible [13, 3, 8, 18]. Another approach uses commercial
software for solving integer programs [1]. It has been shown that non-optimal alloca-
tion algorithms cannot always ensure truthfulness [9]. For an overview of combinatorial
auctions we refer to de Vries et al. [17].

The goal of an auction designer is to design the auction in such a way that in-
tended goals are met while bidders act selfishly, i.e. choosing the strategy they think
is best for them. Designing auctions or more generally games (mechanisms) is the
central question of mechanism design. One desirable characteristic of a mechanism
is incentive-compatibility. A mechanism is incentive-compatible, if telling the truth is
a dominant strategy for each bidder. In an incentive-compatible auction, the auction-
eer might hope for a high revenue, since no bidder underbids. Bidders might favour
incentive-compatible auctions because they do not have to carry out strategic consid-
erations. The only combinatorial auction that accomplishes incentive-compatibility is
essentially the generalized Vickrey auction (GVA). However, the implementation of a
G VA requires several NP-complete problems to be solved in order to compute the pay-
ments of the bidders. These problems only differ from each other by the exclusion of
one player from the auction. While mechanism design only asks how one can design
systems so that agents’ selfish behavior results in desired system-wide goals, algorith-
mic mechanism design additionally considers computational tractability. Focussing on
algorithmic mechanism design, we present ideas to speed up the computation of the so-
called Vickrey payments to be used in a branch-and-bound algorithm. The main idea is
to use information already gained by previous search to obtain good lower bounds for
the still unsolved problems. Though there has been a lot of work on computing exact so-
lutions for the winner determination problem via search [13, 3, 8, 18], to the best of our
knowledge there has been no attempt to integrate the computation of Vickrey payments
in the search process. The only alternative so far is the plain consecutive execution
of one winner determination problem after the other. For another mechanism design
problem, the shortest path problem [7, 10], Hershberger et al. [4] show that Vickrey
payments for all the agents can be computed in the same asymptotic time complexity as
for one agent. For iterative auctions, Parkes [11] proposes an experimental design that
implements the outcome of the GVA in special cases.

While there has been a large amount of work on algorithms for combinatorial auc-
tions, it has only been tested on mostly artificially generated data so far. There is great
need to obtain more realistic data in order to evaluate the algorithms in a more practical
view. To the best of our knowledge, there has only been one approach to generate real-
istic test data before this work so far. Leyton-Brown et al. [6] present a generator that

230 Y. Bleischwitz and G. Kliewer

uses real-world domains like matching or scheduling problems to obtain reasonably re-
alistic data. However, they do not use any data that emanates from the real world. It is
assumed, that real-world data might be harder to deal with than artificial data. Due to
a cooperation with Lufthansa Systems we have access to a real-world flight schedule
and are able to transform it in order to describe a combinatorial auction in which flights
are auctioned off between airline alliance partners'. We implemented our ideas within
a simple backtrack algorithm and tested it on this data. We want to emphasize that it
is not the aim of this paper to compete against already existing algorithms for winner
determination but to investigate how the Vickrey payment computation can be accel-
erated using our improvements. Replacing the simple backtrack algorithm with a more
sophisticated one will retain obtained time savings due to our extensions and suppos-
ably achieve an overall speedup. The rest of the paper is structured as follows. Section
2 explains the allocation and payment rules of the GVA. After presenting a very simple
backtrack algorithm in Sect. 3 we propose extensions in Sect. 4 in order to accelerate
the Vickrey payment computation. Section 5 deals with converting the Lufthansa data
into input for a combinatorial auction. Results are presented and interpreted in Sect. 6.
Section 7 concludes.

2 The Generalized Vickrey Auction

The GVA was initially described by Varian et al. [16]. We describe the allocation and
payment rules of the GVA. Let [m] = {1,...m} be the set of objects that are auctioned
off and [n] = {1,...n} be the set of players. Let S; C [m] be the possible empty set
of objects that are allocated to player j. The set of all feasible allocations is given by
K={S=(S1,...,8,)|S; € [m],j € [n] and §; N S; = 0,, Vi # j,i,j € [n]}. The valu-
ation function v;(S;) represents the value that player j assigns to the object set S; of
allocation S = (S1,...,S,). The set of his valuation functions is denoted by V;. Let the
valuation function v;(-) denote his true valuation and a valuation function ¥;(-) denote
his submitted valuation, which does not necessarily have to be his true valuation. By
means of this function the mechanism can compute valuations for all possible subsets
of objects. For all bidders j € [n], let #; be bidder j’s payment to the auctioneer. In a
Vickrey auction, ¢; is always non-positive. This implies that bidder j has to make a
payment of —¢; to the auctioneer. The set of admissible alternatives is

X={(S,t1,....ta)|]S€Kandt; €ER, Y 1; <0}.
J€ln]
The quasilinear utility for alternative x € X of player j is given by u; : X x V; — R with
uj(x,v;(-)) =v;(S;)+t;. The efficient allocation §* € K maximizes the sum of players’
values. Let $* = (S7,...,S;;) be an optimal allocation and V* be the value of the optimal
allocation (the social welfare):

S* = dV* =
= oremax 3, () and V" =max 3, (85,

I Available on http://wwwcs.uni-paderborn.de/cs/ag-monien/PERSONAL/
YVONNEB/

Accelerating Vickrey Payment Computation 231

Let V* ; be the value of the optimal allocation with player j excluded from the auc-
tion. Player j’s payment ; is defined by 7; = —V*, + (V* —§;(S7)). A player pays the
additional amount that the other players collectively add to their social welfare if player
Jj is excluded from the auction.

The following IP computes the efficient allocation for all valuation functions. The
only adjustment to the auction setting in some cases is to include dummy items to ensure
correct allocation [8]. If there is more than one bid on one object set, only the one with
highest valuation is kept. The variable x5 € {0, 1} denotes if the subset S is allocated to
the player that placed the highest bid on S. Equation (1) ensures, that no object i € [m] is
allocated more than once. The LPrelaxation in which xg € [0, 1] will be used to compute
upper bounds in the backtrack algorithm in Sect. 3.

max ¥sc () V(S)Xs
S.t. ZSSi'xS <1 Vi e [Wl] (])
xs€{0,1} VSC[m]

3 A Standard Backtracking Algorithm

In this section we introduce a standard backtrack algorithm that is the basis for our
investigations referred to as BACKTRACK in the following. A very similar represen-
tation is used by Sandholm et al. [14]. A data structure called profile contains all still
unallocated bids and information about which objects they contain. Bids that are already
a part of the solution are stored in a data structure IN. Let path_value be the revenue
from bids included in /N on the search path so far. Let best be the value of the best so-
lution found so far and IN* the set of winning bids of the best solution found so far. The
algorithm is given in Fig. 1. The first four steps deal with the case in which the value of
the bids winning on the current path is greater than the value of the best solution found
so far. If this is the case, the set of winning bids IN* and best have to be updated. Steps
6 to 9 determine an upper bound of what can be reached on the current search path by
computing the solution to the LP for the profile. If no better solution than the current
best solution can provably be achieved, this branch can be cut off. If the solution to
the LP is integral, it is the optimal assignment for the bids still unallocated given the
allocation in IN and no further search beyond this search node is required. Steps 10 to
16 cover this case and update the best solution found so far if necessary. Using a greedy
allocation algorithm, steps 17 to 21 determine a lower bound of the solution on the
current search path and if necessary update the solution. Step 22 chooses the branching
bid. In Steps 23 to 25, the branching bid is included into the current solution and all
other bids in the profile colliding with the branching bid are removed from the profile.
After calculating the value of the subtree below in step 26, the branching bid is excluded
from the current solution and all bids that were removed in step 25 are reinserted. Step
29 determines the value of the subtree below for the case that the branching bid is not
part of the current solution. There are several ways to modify and tune this standard
backtrack algorithm. Upper bounds can be acquired by any upper bound algorithm. We
choose the LP-relaxation because it can be solved in a reasonable amount of time and
the fractional solutions serve as a sorting criteria for the greedy algorithm. The greedy

232 Y. Bleischwitz and G. Kliewer

1. BACKTRACK (profile, path_value) {

2 IF (path_value > best) {

3 IN* -> IN;

4. best -> path_value;

5. }

6 1p_value = LP(profile);

7 IF (lp_value + path_value <= best){
8. return;

9. }

10. IF (lp solution is integral) {

11. IF (lp_value + path_value > best){
12. best = lp_value + path_value;

13. update INx;

14. }

15. return;

16. }

17. greedy value = GREEDY (profile);

18. IF (greedy value + path_value > best) {
19. best = greedy_value + path_value;
20. update INx;

21. }

22. choose bid b from profile

23. delete b from profile

24. IN = IN + {b}

25. remove all bids b in profile that collide with b
26. BACKTRACK (profile, path_value + v (b))
27. IN = IN - {b}

28. reinsert the bids that were removed in step 25
29. BACKTRACK (profile, path_value)

30. return;

31.)

Fig. 1. BACKTRACK algorithm

algorithm can as well be substituted by any lower bound algorithm. We use CPLEX
9.0? to solve the LP. In the greedy algorithm, bids are ordered in descending values of
the LP solution as suggested by Nisan [8] and inserted into the solution if they do not
collide with any bids in the solution already. Other suggestions for ordering the bids
are given by Sandholm [13]. We always choose the branching bid to be the bid with the
largest LP solution value of the still unallocated bids.

4 Acceleration of Vickrey Payment Computation

Preprocessing The only preprocessing that is applied within BACKTRACK is to delete
dominated bids. A bid by = (S1,v1) on object set S; with value v; dominates a bid
by = (S3,v2) if §; C S, and v; > v,. Though this is an accurate technique to solve the
winner determination problem only, this procedure might produce incorrect results if
the Vickrey payments have to be computed afterwards. Consider the following setting:

player 1 player 2 player 3
value|objects|value| objects|value| objects
1 {2,0}|3 {0,2,3}]2 {1}
3 {1} 4 {1,2,3,4}

In this setting, bid (2,{1}) of player 3 is dominated by bid (3,{1}) of player 1. If we
delete this bid the optimal assignment grants bid (3,{1}) to player 1 and bid (3,{0,2,3})
to player 2. This assignment does not change if we keep the dominated bid. However,

2Www.cplex.com

Accelerating Vickrey Payment Computation 233

the payment of player 1 is —2 for the case of deleting and —1 for the case of keeping
the dominated bid. The bid that dominates bid (2,{1}) of player 3 belongs to player 1.
If player 1 is excluded from the auction, no other bid dominates bid (2,{1}) of player
3. Consequently, this bid can be deleted for the winner determination, but has to be
reinserted for the computation of player 1’s payment since he is the only player that
submits a dominating bid for it. The naive approach would be to eliminate all domi-
nated bids for the winner determination, compute the efficent allocation, reinsert them
again, delete the bids of player j, delete all dominated bids from the remaining bids,
compute ?;, reinsert the bids deleted before, delete the bids of player &, and so on. In
our implementation, a preprocessing phase eliminates all dominated bids. Each player
remembers the bids that were deleted only because of one of his bids. If a player is
excluded from the auction to compute his payment, he reinserts those bids into the auc-
tion profile. Other preprocessing techniques are proposed by Sandholm [13]. It has to
be investigated, how they are to be applied to the computations of Vickrey payments.

Bounds. To conduct a GVA, one winner determination problem has to be solved for
the auction comprising all players. Additionally, for each player one winner determi-
nation problem has to be solved in which the player is excluded from the auction. The
main motivation for the attempt to speed up the calculation of the Vickrey payments
using a branch and bound method is the possibility to use the information gained by the
previous runs of the algorithm. Let /; be a lower bound for the solution value Vi‘j of
the problem excluding player j. Consider the first problem that includes all players. A
backtrack search tree is depicted in Fig. 2. During the search for the optimal solution,
we come across various feasible solutions. These solutions could already be optimal
solutions for the problem with one player excluded or at least provide lower bounds.
Let FEA~/ be a feasible solution that does not assign any objects to player j. In that
case, we can update the lower bound /; for the problem without player jif [; < F EA~/.
Let now v;(S;) be the value of the object set S; # @ assigned to player j by a feasible
allocation FEA. The lower bound /; can be updated, if [; < FEA —v;(S;). If the opti-
mal solution does not grant any of player j’s bids, his payment is zero and V*. = V*.
If player j receives a subset S;f in the optimal solution with value OPT it has to be
checked, if I; < OPT —v ,(Sj) All these updates can be made during the subsequent
runs as well. The bounds have only been updated for the players j for which the value

FEA(—j)
FEA

OPT

Fig. 2. left: BACKTRACK search tree. right: partition of flights

234 Y. Bleischwitz and G. Kliewer

Vv ; has not been determined yet. To avoid a large running time overhead we only update
the bounds /; if the current best solution is updated.

Approximations. Even if we can provide a good lower bound or even the optimal but not
verified solution value for a problem, a branch-and-bound method does not necessariliy
have to find the optimal solution faster than if no initial bound is given. This might be
the case if a lot of similar bids were placed and various combinations of subsets yield
a similar value. In that situation, the LP might compute an upper bound dangling just a
tiny improvement and the branch cannot be cut off. One way out of this dilemma is to al-
low small deviations from the optimal solutions. We cut off a branch if the upper bound
only differs from the current best solution by a certain percentage. This approach can
as well be applied to the winner determination problem on its own. Although approxi-
mation in combinatorial auctions compromises the incentive-compatibility of the GVA,
it is arguable if a deviation by a small percentage can be traced and taken advantage of
by the bidders [10].

5 Testdata

Most experiments so far have been conducted on artificially generated problems. The
most common distributions are random, weighted random, uniform, and decay [14, 17].
Our approach is to use a real flight schedule to be able to conduct experiments on realis-
tic instances. This data is converted into data for a combinatorial auction. The players in
this setting are partners of an airline alliance who are competing for rights to fly certain
flights. A cooperation with Lufthansa Systems makes it possible to acquire an authentic
Lufthansa flight schedule. Since data of a complete airline alliance is unavailable, we
partition the Lufthansa flight schedule into several parts to simulate alliance partners.
Although these data is artificially generated, it is more influenced by real-world data
than other test data used in previous work.

We first want to justify the use of the GVA in order to allocate the flights between
the alliance partners. The GVA is provably hard to compute. The calculation of the op-
timal allocation as well as the calculation of the payments for each airline are NP-hard
problems in the general case. However, the optimal allocation in the GVA maximizes
the social welfare. Since we consider an alliance, this kind of objective fits perfectly in
our setting.

In the following we explain the data generation in detail. Objects are flights. For
each flight, each alliance partner has a certain valuation. Flights inside Germany are
considered accessible to all alliance partners. Flights outside Germany are exclusive to
a single alliance partner. The aim is to allocate the flights inside Germany such that the
maximal social welfare for the alliance is achieved. Let G be the set of flights inside
Germany and let A; be the set of flights that are exclusively flown by airline j. Figure
2 depicts the partition of the flights for four alliance partners. The nodes of the graph
represent cities, each edge represents one leg. One possible passenger travel itinerary
is illustrated by the dashed edges. For the investigated test data, the Lufthansa flight
schedule is partitioned into 20 parts, each for one of 20 alliance partners. The set G
consists of 64 flights. For each airline 1000 bids on sets of flights out of G are generated.

Accelerating Vickrey Payment Computation 235

Each bid does not contain more than 20 flights. There are about 160000 itineraries
that are used to determine the values of the bids. In detail, for each airline j a set G;
consisting of 1000 subsets G;(i),i = 1,...,1000 with a maximal cardinality of 20 is
determined. A subset G (i) is called relevant for airline j, if there are itineraries that
contain flights from G (i) as well as flights from A ;. For each relevant subset G;(i) € G;
the valuations of the flights in these itineraries are summed up. This sum represents the
bid of airline j for the set of flights G, (7). Airline j bids on each relevant subset of G ;.
We generated instances each with 100,200, ...,900 bids per player by drawing them
randomly from the generated bids. For every amount of bids per player we generated
10 instances.

6 Results

First, we show that the simple backtrack algorithm is comparable to other recently pub-
lished backtrack algorithms. We tested BACKTRACK on the most common distribu-
tions as described in Sect. 5. These distributions were used by other authors as well
[14,17,3]. We focus on the results of Sandholm et al. [14] since they claim their algo-
rithm CABOB to be the currently fastest optimal algorithm for the winner determina-
tion problem. They conducted experiments against CPLEX 7.0 on various distributions.
However, they compare median running times instead of average running times. This
still leaves a possibility that nearly half of the running times are arbitrarily larger than
the median running time. We compare the average running times and the median run-
ning times for CPLEX 9.0 and BACKTRACK. The results are shown in in Fig. 3.

RANDOM (48IDS/#OBJECTS=10) WEIGHTED RANDOM (BIDS/#OBJECT=10)

100
CPLEX CPLEX —©—
BACKTRACK —H— BACKTRACK —H—
CPLEX MEDIAN —3— CPLEX MEDIAN —3—
BACKTRACK MEDIAN —&— BACKTRACK MEDIAN —&—

TIME (SEC)
TIME (SEC)

00 1000 1500 2000 500 1000 1500 2000
#BIDS ¥BIDS

DECAY (#BIDS/#OBJECTS=10) 'UNIFORM (450 BIDS, 45 OBJECTS)

CPLEX MEDIAN —3— CPLEX MEDIAN —3¢—
BACKTRACK MEDIAN —&— BACKTRACK MEDIAN —&—

TIME (SEC)
-
TIME (SEC)

ol 3

0.001 o1
200 300 400 500 600 H 4 s 6 7 s 9 10 n 12
#BiDS 4 OBJECTS PERBID

Fig. 3. running times on several distributions for BACKTRACK and CPLEX

236 Y. Bleischwitz and G. Kliewer

There are a lot of interesting phenomenons to discuss which goes beyond the scope
of this paper. For further investigation on these problem distributions, see [14, 2]. Since
our algorithm is a very simple backtrack algorithm that does not use any sophisticated
techniques, the running times are sometimes slower than the running times achieved
before. However, they are not dramatically slower and the tendencies if a problem dis-
tribution is hard or easy are the same. Again we want to emphasize that it is not our aim
to compete with CPLEX. We use this simple backtrack algorithm for research on how
to speed up the computation of Vickrey payments in general.

AIRLINES (64 OBJECTS, 20 PLAYERS) AIRLINES (VICKREY) (64 OBJECTS, 20 PLAYERS)

CPLEX —O— CPLEX :8:
BACKTRACK —E— BACKTRACK

¥ CPLEXMEDIAN —%— CPLEX MEDIAN —3%—

6 BACKTRACK MEDIAN —&— BACKTRACK MEDIAN —&—

TIME (SEC)
TIME (SEC)

100 200 300 400 500 600 700 800 E
#BIDS PER PLAYER #BIDS PER PLAYER

Fig. 4. running times on the airline distribution

The rest of our experiments uses the airline alliance test data. To get an impression
of the complexity of these problems we show the average and the median running times
of CPLEX 9.0 and BACKTRACK in Fig. 4. On the left, only the winner determination
problem is solved. On the right, the Vickrey payments are computed as well. The per-
centage of runs in which the first LP relaxation is already integral increases for the left
side from 0% for 100 bids per players to 100% for 800 and 900 bids per player. The
percentage of the on the spot found integer solutions in the runs computing the Vickrey
payments is listed in the second column of the left table of Fig. 7. As one would expect
from the results of the pure winner determination, the number rises from 0% to 90.5%.
To put the large running times for a small number of bids per player in perspective,
we investigate how long it takes until the solution is found and until it is verified. The
large average running time for the computation of the winners for 100 bids per player
is caused by essentially three instances that yield a much larger running time than the
other instances. For these three instances, Fig. 5 depicts the current best solution at
each timestep a solution improves during the search. In all three cases, a remarkable
amount of time is needed for verification after the best solution has been found. The
actual time to find the optimal solution is much smaller than the overall running time.
Tuning BACKTRACK to increase the number of cuts might decrease the amount of
time needed for verification.

Figure 6 compares the average running times and the average recursion calls needed
by BACKTRACK to compute the Vickrey payments to the several extensions we made
to BACKTRACK to speed up this computation. The addition WITH BOUNDS denotes
the permanent update of the lower bounds for the values V* ; for players j that have not
been excluded from the auction yet but have received a set of objects in the efficient

Accelerating Vickrey Payment Computation 237

AIRLINES 100 BIDS PER PLAYER

14800
INSTANGE 10 —A—
INSTANCE 5 —%—

14500 INSTANCE 2 —9— |

14400
14200

14000

OBJECTIVE

13800

13600

13400

13200
1

10 15 20
TIME (SEC)

Fig. 5. anytime performance of BACKTRACK on three airline instances

AIRLINES (VICKREY) (64 OBJECTS, 20 PLAYERS) AIRLINES (VICKREY) (64 OBJECTS, 20 PLAYERS)

BACKTRACK —E— BACKTRACK —B—
BAGKTRACK WITH BOUNDS —&— TRAGK WITH BOUNDS —&—
180 BACKTRACK(0.1) WITH BOUNDS —3— BACKTRACK(0.1) WITH BOUNDS —3—

BACKTRACK(1) WITH BOUNDS —6— 60000 BACKTRACK(1) WITH BOUNDS —6—

50000

40000

30000

TIME (SEC)
RECURSION CALLS

60 20000

10000

- S - P

o o
100 200 300 400 500 600 760 800 900 100 200 300 400 500 630 700 80 ;i
#BIDS PER PLAYER #BIDS PER PLAYER

Fig. 6. running times and recursion calls for the airline distribution

allocation. Unfortunately, this extension on its own does not significantly reduce the
amount of computation. Though this is a drawback in some respects, there are promis-
ing results as well. Figure 7 presents some of these results. The third column of the left
table presents the percentage of optimal bounds, i.e. bounds that are given as initial so-
lutions to BACKTRACK which are already optimal but not verified yet. The fourth col-
umn shows the average deviation of the bounds, i.e. the difference between the bounds
given as initial solutions and the actual best solution. For the airline instances with 100
bids per player the percentage of 7.3% of the optimal bounds seems to be small com-
pared to the large amount of running time. One could expect, that the more time the
algorithm spends on searching, the better the bounds on V* ;- This conjecture is sup-
ported by the results on the average deviation. On average, the bounds given as initial

TSt [InL501.(%) | opL.bds.(%)[bds.dev.(%) instance| sol.dev.(%) | pay.dev.(%) | opt. pay.(%)
00 00 R 573 dev. 0.1 1 0.1 1 0.1 1
200 17.0 53 34 100 0.03 [0.23] 1.56 |[43.04| 88.52 |[24.40
300|300 03 33 200 0.03 |0.20| 1.69 [19.86| 91.38 [44.98
400|452 0.0 37 300 0.00 [0.19] 0.16 |[17.13] 89.00 |45.93
500|619 18 46 400 0.00 [0.15] 3.55 |[13.94| 88.04 |56.94
600| 705 00 42 500 0.00 [0.07| 0.43 |2.41]| 90.43 |76.08
70| 676 00 42 600 0.00 [0.05] 1.39 |2.86| 94.26 |80.38
800| 843 0.0 65 700 0.00 |0.06| 4.28 |6.07| 96.17 |[82.78
900| 905 00 04 800 0.00 [0.02] 0.01 [0.58| 98.56 |94.26
900 0.00 [0.00| 0.00 |0.04 100 [98.09

Fig.7. data for BACKTRACK WITH BOUNDS with(out) deviation

238 Y. Bleischwitz and G. Kliewer

solutions only deviate from the optimal solution by 2.2%. With a decreasing percentage
of integer solutions the percentage of the optimal bounds decreases and the pecentage
of deviation increases. This phenomenon can be explained by less search due to a lot of
initial integer LP solutions.

Since in a lot of cases either the bounds are very close to the optimal solution or
have the same value already, we allow a small deviation from the optimal solution hop-
ing for faster computation of near-optimal solutions or faster verification of optimal
solutions in the second case. We carried out experiments allowing a deviation of 0.1%
and of 1%. Figure 6 denotes these cases with BACKTRACK(0.1) WITH BOUNDS and
BACKTRACK(1) WITH BOUNDS. For both cases, the running times are improved.
The right table in Fig. 7 shows additional information on the experiments. Particulary
interesting is the solution deviation, i.e. the actual deviation, not the allowed deviation
from the optimal solution. Though we allow a deviation of 0.1%, the actual deviation
is almost zero in all cases and never larger than 0.03%. If we accept a deviation of
1%, the actual deviation is always less than 0.23%. Despite the negative results on us-
ing approximation in truthful mechanisms, there is hope that such a small deviation
is intractable by the users. One observable and inevitable effect of computing an ap-
proximation no matter how close to optimal is the change of allocation. Objects are
very likely given to other players than in the efficient allocation and therefore pay-
ments and utilities change enormously. This explains the third and fourth column of
the left table in Fig. 7 that show the deviation from the payments and the percentage
of correctly computed payments with respect to the optimal allocation and the resulting
payments.

7 Conclusions and Future Research

To guarantee incentive-compatibility for general combinatorial auctions, a GVA has to
be implemented. Computing the winners and their payments in a GVA involves solv-
ing several NP-complete problems. Using a backtrack algorithm on each problem, we
on-the-fly computed lower bounds for the remaining problems. We showed that this ap-
proach often yields very good bounds if the percentage of initial integral LP solutions is
small. We observed that it is not sufficent to only provide good bounds in order to speed
up the computation. Even if given the optimal solution as a lower bound, the back-
track algorithm might take a long time to verify this solution. Nevertheless, we took
advantage of the good bounds by allowing small deviations from the optimal solution
and being able to accelerate the computation. Our results support the assumption that
authentic data is much harder to cope with than artificially generated data.

For additional investigation, it is a central question to what extend the incentive-
compatibility remains uneffected by a small deviation from optimum. In our future
research, we will incorporate our extensions into more sophisticated branch-and-bound
algorithms to be able to compete with CPLEX. Another interesting question is to iden-
tify special structures of the airline data and try to exploit it in specialized algorithms.
To get a more realistic view, we will conduct experiments that base upon more than one
flight plan.

Accelerating Vickrey Payment Computation 239

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Andersson, M. Tenhunen, and R. Ygge. Integer Programming for Combinatorial Auction
Winner Determination. In Proceedings of the 4th International Conference on Multi-Agent
Systems, pages 39-46, 2000.

. Y. Bleischwitz. Kombinatorische Auktionen: Einbettung ins Mechanism Design und Algo-

rithmen zur Erteilung der Zuschlaege, Diploma Thesis, University of Paderborn, 2004.

. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the Computational Complexity

of Combinatorial Auctions: Optimal and Approximate Approaches. In D. Thomas, editor,
Proceedings of the 16th International Joint Conferences on Artificial Intelligence, volume 1,
pages 548-553. Morgan Kaufmann Publishers, 1999.

. J. Hershberger and S. Suri. Vickrey Prices and Shortest Paths: What is an edge worth? In

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 252—
259, 2001.

. D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth Revelation in Rapid, Approximately

Efficient Combinatorial Auctions. Proceedings of the 1st ACM Conference on Electronic
Commerce, pages 96-102, 1999.

. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a Universal Test Suite for Com-

binatorial Auction Algorithms. In Proceedings of the 2nd ACM Conference on Electronic
Commerce (ACM-EC), pages 6676, 2000.

. N. Nisan. Algorithms for Selfish Agents. In Proceedings of the 16th Symposium on The-

oretical Aspects of Computer Science, volume 1563 of Lecture Notes in Computer Science,
pages 1-15. Springer, 1999.

. N. Nisan. Bidding and Allocation in Combinatorial Auctions. In Proceedings of the 2nd

ACM Conference on Electronic Commerce, pages 1-12, 2000.

. N. Nisan and A. Ronen. Computationally Feasible VCG Mechanisms. In Proceedings of the

2nd ACM Conference on Electronic Commerce, pages 242-252, 2000.

N. Nisan and A. Ronen. Algorithmic Mechanism Design. Games and Economic Behavior,
35:166-196, 2001.

D. Parkes. An Iterative Generalized Vickrey Auction: Strategy-Proofness without Complete
Revelation. In Proceedings of the AAAI Spring Symposium on Game Theoretic and Decision
Theoretic Agents, pages 78-87, 2001.

M. Rothkopf, A. Pekec, and R. Harstad. Computationally Manageable Combinatorial Auc-
tions. Management Science, 44(8):1131-1147, 1995.

T. Sandholm. An Algorithm for Optimal Winner Determination in Combinatorial Auctions.
In Artificial Intelligence, volume 135, pages 1-54, 2002.

T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A Fast Optimal Algorithm for
Combinatorial Auctions. In Proceedings of the 16th International Joint Conferences on
Artificial Intelligence (IJCAI), pages 542-547. Morgan Kaufmann Publishers, 1999.

M. Tennenholtz. Some Tractable Combinatorial Auctions. In Proceedings of the 17th Na-
tional Conference on Artificial Intelligence, pages 98—103, 2000.

H. Varian and J. MacKie-Mason. Generalized Vickrey Auctions. Technical Report, Univer-
sity of Michigan, 1995.

R. Vohra and S. de Vries. Combinatorial Auctions: A Survey. INFORMS Journal of Com-
puting, 15(3), 2003.

E. Zurel and N. Nisan. An Efficient Approximate Allocation Algorithm for Combinatorial
Auctions. In Proceedings of the 3rd ACM Conference on Electronic Commerce, pages 125—
136, 2001.

Algorithm Engineering for
Optimal Graph Bipartization

Falk Huffner*

Institut fiir Informatik, Friedrich-Schiller-Universitiat Jena,
Ernst-Abbe-Platz 2, D-07743 Jena

hueffner@minet.uni-jena.de

Abstract. We examine exact algorithms for the NP-complete GRAPH
BIPARTIZATION problem that asks for a minimum set of vertices to delete
from a graph to make it bipartite. Based on the “iterative compression”
method recently introduced by Reed, Smith, and Vetta, we present new
algorithms and experimental results. The worst-case time complexity is
improved from O(3* - kmn) to O(3* - mn), where n is the number of
vertices, m is the number of edges, and k is the number of vertices to
delete. Our best algorithm can solve all problems from a testbed from
computational biology within minutes, whereas established methods are
only able to solve about half of the problems within reasonable time.

1 Introduction

There has recently been a much increased interest in exact algorithms for NP-
hard problems [23]. All of these exact algorithms have exponential run time,
which at first glance seems to make them impractical. This conception has been
challenged by the view of parameterized complexity [6]. The idea is to accept
the seemingly inevitable combinatorial explosion, but to confine it to one aspect
of the problem, the parameter. If for relevant inputs this parameter remains
small, then even large problems can be solved efficiently. Problems for which
this “confining” is possible are called fized-parameter tractable.

The problem we focus on here is GRAPH BIPARTIZATION, also known as
MAXIMUM BIPARTITE SUBGRAPH or ODD CYCLE TRANSVERSAL. It is NP-
complete [13] and MaxSNP-hard [19]; the best known polynomial-time approxi-
mation is by a logarithmic factor [9]. It has numerous applications, for example
in VLSI design [1, 12], computational biology [21, 18], and register allocation [24].

In a recent breakthrough paper, solving a more than five years open ques-
tion [14], Reed, Smith, and Vetta [20] proved that the GRAPH BIPARTIZATION
problem on a graph with n vertices and m edges is solvable in O(4% - kmn)
time, where k is the number of vertices to delete. The basic idea is to construct
size-k solutions from already known size-(k + 1) solutions, the so-called iterative

* Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 240-252, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Algorithm Engineering for Optimal Graph Bipartization 241

compression. Their algorithm is of high practical interest for several reasons: the
given fixed-parameter complexity promises small run times for small parameter
values; no intricate algorithmic concepts with extensive implementation require-
ments or large hidden runtime costs are used as building blocks; and being able
to “optimize” given solutions, it can be combined with known and new heuristics.

In this work we demonstrate by experiments that iterative compression is
in fact a worthwhile alternative for solving GRAPH BIPARTIZATION in practice.
Thereby, we also shed more light on the potential of iterative compression, which
has already found applications in other areas as well [3,4,11, 16]. The structure
of this work is as follows: In Sect. 3 we give a top-down presentation of the
Reed-Smith-Vetta algorithm with the goal of making this novel algorithm tech-
nique accessible to a broader audience. Moreover, it prepares the ground for
several algorithmic improvements in Sect. 4. In Sect. 5 we present experimental
results with real-world data (Sect. 5.1), synthetic application data (Sect. 5.2),
and random graphs (Sect. 5.3).

2 Preliminaries

By default, we consider only undirected graphs G = (V, E) without self-loops,
where n := |V| and m := |E|. We use G[V’] to denote the subgraph of G induced
by the vertices V/ C V. For a set of vertices V' C V, we write G\ V' for the
graph G[V \ V’]. With a side of a bipartite graph G, we mean one of the two
classes of an arbitrary but fixed two-coloring of G. A wvertex cut between two
disjoint vertex sets in a graph is a set of vertices whose removal disconnects these
two sets in the graph.

Definition 1 (Graph Bipartization). Given an undirected graph G = (V, E)
and a nonnegative integer k. Does G have an odd cycle cover C' of size at most k,
that is, is there a subset C C V of vertices with |C| < k such that each odd cycle
in G contains at least one vertex from C'? Note that the removal of all vertices
in C from G results in a bipartite graph.

We investigate GRAPH BIPARTIZATION in the context of parameterized com-
plexity [6] (see [5,7,8,17] for recent surveys). A parameterized problem is called
fized-parameter tractable if it can be solved in f(k) - nPW time, where f is a
function solely depending on the parameter k, not on the input size n.

For comparison, we examined two alternative implementations: one by Wer-
nicke based on Branch-and-Bound [22], and one based on the following simple
integer linear program (ILP):

Ci,...,Cp,81,...,8, : binary variables

minimize Y., C;

s.t. V{v,w} € E:s,+ 8y + (Cyp +Cy) > 1
V{v,w} € E: 8y + 8u — (Cp +Cp) < 1

The ILP performs surprisingly well; when solved by GNU GLPK [15], it con-
sistently outperforms the highly problem-specific Branch-and-Bound approach

242 F. Hiiffner

by Wernicke on our test data, sometimes by several orders of magnitude. There-
fore, we use it as the main comparison point for the performance of our algo-
rithms.

3 A Top-Down Presentation of the Reed-Smith-Vetta
Algorithm

In this section we present in detail the algorithm for GRAPH BIPARTIZATION as
described by Reed, Smith, and Vetta [20]. While they focus on the correctness
proof and describe the algorithm only implicitly, we give a top-down description
of the algorithm while arguing for its correctness, thereby hopefully making the
result of Reed et al. more accessible.

The global structure is illustrated by the function ODD-CYCLE-COVER. It
takes as input an arbitrary graph and returns a minimum odd cycle cover.

ODpD-CYCLE-COVER(G = (V, E))

1 V' 0

2 C<—0

3 for each v in V

4 do V' — V' U{v}

5 C — CoMPRESs-OCC(G[V'],C U {v})
6

return C

The routine COMPRESS-OCC takes a graph G and an odd cycle cover C
for G, and returns a smaller odd cycle cover for G if there is one; otherwise,
it returns C' unchanged. Therefore, it is a loop invariant that C' is a minimum
odd cycle cover for G[V'], and since eventually V' = V| we obtain an optimal
solution for G.

It remains to implement COMPRESS-OCC. The idea is to use an auxiliary
graph H(G,C) constructed from G = (V, E) and C as follows (see Fig. 1 (a)
and (b)):

Remove the vertices in C' from G and determine the sides of the remaining bi-

partite graph (in Fig. 1 (a), one side comprises {b, d} and the other {e, f, h}).

— For each ¢ € C, add a vertex ¢; to one side and another vertex co to the
other side.

— For each edge {v,c} € E with v ¢ C and ¢ € C, connect v to that vertex
from ¢; and ¢y that is on the other side (see the bold lines in Fig. 1 (b)).

— For cach edge {c,d} € E with both ¢,d € C, arbitrarily connect either ¢;

and dy or ¢o and d; (for example in Fig. 1, we chose {g1,c2}).

The crucial property of the resulting graph H is that every odd cycle in G
that contains a vertex ¢ € C' implies a path (ci,...,c2) in H. This means that
all odd cycles in G can be found as such paths in H, since the vertices in C
touch all odd cycles. For example, the triangle d, ¢, h in G (Fig. 1 (a)) can be
found as path (¢1,h,d,c2) in H(G,C) (Fig. 1 (b)).

Algorithm Engineering for Optimal Graph Bipartization 243

Therefore, if we could find a set C” of vertices whose removal disconnects for
each ¢ € C the two vertices ¢; and ¢o in H, then C’ is an odd cycle cover for G.
Unfortunately, solving this multi-cut problem is still NP-complete. Consider,
however, a partition of the vertices | J .- {c1,c2} such that for all ¢ € C' the two
copies ¢1 and ¢z are in different classes (called a walid partition for C'). We can
find a vertex cut between the two classes of a valid partition in polynomial time
by using maximum flow techniques. It is clear that such a cut is also an odd
cycle cover for GG, since in particular it separates ¢; and co for each ¢ € C. It
is not clear, though, that if there is a smaller odd cycle cover for G, then we
will find it as such a cut. This is provided by the following lemma, which while
somewhat technical, does not require advanced proof techniques.

Lemma 1 ([20]). Consider a graph G with an odd cycle cover C' with |C| =k
containing no redundant vertices, and a smaller odd cycle cover C" with C'NC =
0 and |C'| < k. Let V| and V4 be the two sides of the bipartite graph G\ C'.
Then C' is a vertex cut in H(G,C') between {c1 |c € CNV{}U{ca | ce CNV}
and {ca |ce CNV{}U{c1 |ce CNVSTL.

That is, provided C' N C = @, we can in fact find C” as a vertex cut between
the two classes of a valid partition, namely the valid partition (Vi,V3) that can
be constructed as follows: for ¢ € C, if ¢ is on the first side of G \ C’, put ¢;
into V7 and ¢y into Vo; otherwise, put c¢o into V4 and ¢y into V5. For the proof
we refer to Reed et al. [20].

To meet the requirement of C’ N C = (), we simply enumerate all 2¥ sub-
sets Y C C; the sets Y are odd cycle covers for G\ (C'\ Y). We arrive at the
following implementation of COMPRESs-OCC.

CoMPRESS-OCC(G, C)

1 foreachY CC

2 do H — Aux-GrapPH(G \ (C\Y),Y)

3 for each valid partition (Y7,Y2) of Y

4 do if 3 vertex cut D in H between Y; and Y2 with |D| < |Y|
5 then return (C\Y)UD

6 return C

We examine every subset Y of the known odd cycle cover C. For each Y, we
look for smaller odd cycle covers for G that can be constructed by replacing the
vertices of Y in C by fewer new vertices from V' \ C (clearly, for any smaller
odd cycle cover, such a Y must exist). Since we thereby decided to retain the
vertices in C'\'Y in our odd cycle cover, we examine the graph G’ := G\ (C'\Y).
If we now find an odd cycle cover D for G’ with |D| < |Y|, we are done, since
then (C'\'Y)U D is an odd cycle cover smaller than C for G. To find an odd
cycle cover for G’, we use its auxiliary graph H and Lemma 1.

Ezample. Let us now examine an example for COMPRESS-OCC (see Fig. 1).
Given is a graph G and an odd cycle cover C = {a,c, g}, marked with cir-
cles (Fig. 1 (a)). Observe that partitioning the remaining vertices into {b,d}

244 F. Hiiffner

a al as ai a2
e (& e
b ! b ! b !
C C1 C2
g g1 g2 g1 g2
d h d h d h
(a) (b) (c)

Fig. 1. Construction of auxiliary graphs in COMPRESs-OCC. (a) G with C = {a, ¢, g};
(b) H for Y ={a,c,g}; (¢c) H for Y = {a, g}

and {e, f,h} induces a two-coloring in G \ C; only the bold edges conflict with
this two-coloring in G. The function COMPRESS-OCC now tries all subsets Y
of C; we give two examples, first Y = C. We construct the auxiliary graph H
(Fig. 1 (b)). Note how by selecting a suitable copy of the duplicated vertices
from Y for the bold edges, we can honor the two-coloring (for example, we
chose ag over ay for the edge {a,b}). The algorithm will now try to find a vertex
cut of size less than 3 for some valid partition. Consider for example the valid
partition {a1, ¢, g1} and {asg, c1, g2 }. With (a1, e,b,as), (c2,d, g2), and (g1, f, c1),
we can find 3 vertex-disjoint paths between the two classes, so there is no vertex
cut smaller than 3. In fact, for this choice of Y, there is no valid partition with
a vertex cut smaller than 3. Next, we examine the case Y = {a, g} (Fig. 1 (c)).
Here we succeed: for the valid partition {a1,¢91}, {az2, g2}, the set D := {b} is
a vertex cut of size 1. Note this valid partition corresponds to a two-coloring
of G\ ((C\Y)UD). We can now construct a smaller odd cycle cover for G
as (C\Y)uD = {b,c}.

Note that although Lemma 1 does not promise it, we might also find a vertex
cut that leads to a smaller odd cycle cover for some Y with Y N C’ # (). For
example, had we chosen to insert the edge {c1, g» } instead of {¢2, g1} in Fig. 1 (b),
we would have found the cut {b, ¢; } between {a1, 1,91} and {as, ca, g2}, leading
to the odd cycle cover {b,c}. Therefore, in practice one can find a smaller odd
cycle cover often much faster than predicted by the worst case estimation.

Running Time. Reed et al. [20] state the run time of their algorithm as O(4* -
kmn); a slightly more careful analysis reveals it as O(3% - kmn). For this, note
that in effect the two loops in line 1 and 3 of COMPRESS-OCC iterate over all
possible assignments of each ¢ € C to 3 roles: either ¢ € C'\'Y, or ¢ € Y7,
or ¢ € Y. Therefore, we solve 3¥ flow problems, and since we can solve one flow
problem in O(km) time by the Edmonds-Karp algorithm [2], the run time for
one invocation of COMPRESS-OCC is O(3% - km). As OpD-CYCLE-COVER calls
ComPRESS-OCC n times, we arrive at an overall run time of O(3* - kmn).

Theorem 1. GRAPH BIPARTIZATION can be solved in O(3% - kmn) time.

Algorithm Engineering for Optimal Graph Bipartization 245

4 Algorithmic Improvements

In this section we present several improvements over the algorithm as described
by Reed et al. [20]. We start with two simple improvements that save a constant
factor in the run time. In Sect. 4.1 we then show how to save a factor of k in
the run time, and in Sect. 4.2 we present the improvement which gave the most
pronounced speedups in our experiments presented in Sect. 5.

First, it is easy to see that each valid partition (Y7, Y3) is symmetric to (Ya, Y7)
when looking for a vertex cut, and therefore we can arbitrarily fix the allocation
of one vertex to Y7, saving a factor of 2 in the run time.

The next improvement is justified by the following lemma.

Lemma 2. Given a graph G = (V,E), a vertex v € V, and a minimum odd
cycle cover C for G\ {v} with |C| = k. Then no odd cycle cover of size k for G
contains v.

Proof. It C' is an odd cycle cover of size k for G, then C"\ {v} is an odd cycle
cover of size k — 1 for G[V '\ {v}], contradicting that |C| is of minimum size. O

With Lemma 2 it is clear that the vertex v we add to C' in line 5 of ODD-
CyYCLE-COVER cannot be part of a smaller odd cycle cover, and we can omit
the case v ¢ Y in COMPRESS-OCC, saving a third of the cases.

4.1 Exploiting Similarity of Flow Subproblems

The idea here is that the flow problems solved in COMPRESS-OCC are “similar”
in such a way that we can “recycle” the flow networks for each problem. Recall
that each flow problem corresponds to one assignment of the vertices in C' to
the three roles “c; source, co target” (¢ € Y1), “co source, ¢ target” (¢ € Ya),
and “not present” (¢ € C'\'Y). Using a so-called (3, k)-ary Gray code [10], we
can enumerate these assignments in such a way that adjacent assignments differ
in only one element. For each of these (but the first one), one can solve the flow
problem by adapting the previous flow:

— If the affected vertex c was present previously, zero the flow along the paths
with end points ¢; resp. ¢p (note they might be identical).

— If ¢ is present in the updated assignment, find an augmenting path from c¢;
to co resp. from ¢y to c;.

Since each of these operations can be done in O(m) time, we can perform
the update in O(m) time, as opposed to O(km) time for solving a flow problem
from scratch. This improves the overall worst case run time to O(3* - mn). We
call this algorithm OCC-GRAY.

Theorem 2. GRAPH BIPARTIZATION can be solved in O(3F - mn) time.

246 F. Hiiffner

4.2 Enumeration of Valid Partitions

Lemma 1 tells us that given the correct subset Y of an odd cycle cover C, there is
a valid partition for Y such that we will find a cut in the auxiliary graph leading
to a smaller odd cycle cover C’. Therefore, simply trying all valid partitions will
be successful. However, Lemma 1 even describes the valid partition that will lead
to success: it corresponds to a two-coloring of the vertices in G\ C’. This allows
us to omit some valid partitions from consideration. If for example there is an
edge between two vertices ¢,d € Y, then any two-coloring of G\ C’ must place ¢
and d on different sides. Therefore, we only need to consider valid partitions that
place ¢ and d into different classes. This leads to the following modification of
CoMPRESsS-OCC:

CoMPRESS-OCC’(G = (V, E), C)

1 for each bipartite subgraph B of G[C]

2 do for each two-coloring V1, V5 of B

3 do H — Aux-GraPH(G \ (C\V(B)),V(B))

4 if 3 vertex cut D in H between V; and Va with |D| < |V (B)|
5 then return (C'\ V(B))UD

6 return C

The correctness of this algorithm follows directly from Lemma 1. The worst
case for COMPRESS-OCC’ is that (' is an independent set in GG. In this case,
every subgraph of G[C] is bipartite and has 21€1" two-colorings. This leads to
exactly the same number of flow problems solved as for COMPRESS-OCC. In
the best case, C' is a clique, and G[C] has only O(|C|?) bipartite subgraphs, each
of which admits (up to symmetry) only one two-coloring.

It is easy to construct a graph where any optimal odd cycle cover is in-
dependent; therefore the described modification does not lead to an improve-
ment of the worst-case run time. However, at least in a dense graph, it is “un-
likely” that the odd cycle covers are completely independent, and already a few
edges between vertices of the odd cycle cover can vastly reduce the required
computation.

Note that with a simple branching strategy, one can enumerate all bipartite
subgraphs of a graph and all their two-colorings with constant cost per two-
coloring. This can also be done in such a way that modifications to the flow
graph can be done incrementally, as described in Sect. 4.1. The two simple
improvements mentioned at the beginning of this section also can still be applied.
We call the thus modified algorithm OCC-ENuM2COL.

It seems plausible that for dense graphs, an odd cycle cover is “more likely”
to be connected, and therefore this heuristic is more profitable. Experiments
on random graphs confirm this (see Sect. 5.3). This is of particular interest
because other strategies (such as reduction rules [22]) seem to have a harder
time with dense graphs than with sparse graphs, making hybrid algorithms
appealing.

Algorithm Engineering for Optimal Graph Bipartization 247

5 Experiments

Implementation Details. The program is written in the C programming lan-
guage and consists of about 1400 lines of code. The source and the test data are
available from http://www.minet.uni-jena.de/ hueffner/occ.

Data Structures. Over 90% of the time is spent in finding an augmenting path
within the flow network; all that this requires from a graph data structure is
enumerating the neighbors of a given vertex. The only other frequent operation is
“enabling” or “disabling” vertices as determined by the Gray code (see Sect. 4.1).
In particular, it is not necessary to quickly add or remove edges, or query whether
two vertices are neighbored. Therefore, we chose a very simple data structure,
where the graph is represented by an array of neighbor lists, with a null pointer
denoting a disabled vertex.

Since the flow simply models a set of vertex-disjoint paths, it is not necessary
to store a complete n X n-matrix of flows; it suffices to store the flow predecessor
and successor for each node, reducing memory usage to O(n).

Finding Vertex Cuts. It has now become clear that in the “inner loop” of the
algorithm, we need to find a minimum vertex cut between two sets Y7 and Y5 in
a graph G, or equivalently, a maximum set of vertex-disjoint paths between two
sets. This is a classical application for maximum flow techniques: The well-known
max-flow min-cut theorem tells us that the size of a minimum edge cut is equal
to the maximum flow. Since we are interested in vertex cuts, we create a new, di-
rected graph G’ for our input graph G = (V, E): for each vertex v € V, create two
vertices v;, and v,y and a directed edge (Vin, Vout). For each edge {v,w} € E, we
add two directed edges (Vout, Win) and (woyt, Vi). It is not too hard to see that a
maximum flow in G’ between Y := Uy€Y1 Yin and Yy := Uer2 Your coOrresponds
to a maximum set of vertex disjoint paths between Y; and Y5. Furthermore, an
edge cut D between Y and Yy is of the form (J, oy (Vin, Vout), and U(
is a vertex cut between Y7 and Y5 in G.

Since we know that the cut is relatively small (less than or equal k), we employ
the Edmonds-Karp algorithm [2]. This algorithm repeatedly finds a shortest
augmenting path in the flow network and increases the flow along it, until no
further increase is possible.

Vin,Vout) €D v

Ezxperimental Setup. We tested our implementation on various inputs. The test-
ing machine is an AMD Athlon 64 3400+ with 2400 MHz, 512 KB cache, and
1 GB main memory, running under the Debian GNU/Linux 3.1 operating sys-
tem. The source was compiled with the GNU gcc 3.4.3 compiler with options
“-03 -march=k8”. Memory requirements are around 3 MB for the iterative com-
pression based algorithms, and up to 500 MB for the ILP.

5.1 Minimum Site Removal

The first test set originates from computational biology. The instances were
constructed by Wernicke [22] from data of the human genome as a means to

248 F. Hiiffner

Table 1. Run times in seconds for different algorithms for Wernicke’s benchmark
instances [22]. Runs were cancelled after 2 hours without result. We show only the
instance of median size for each value of |C|. The column “ILP” gives the run time
of the ILP given in Sect. 2 when solved by GNU GLPK [15]. The column “Reed”
gives the run time of Reed et al.’s algorithm without any of the algorithmic improve-
ments from Sect. 4 except for omitting symmetric valid partitions. The columns “OCC-
GRAY” and “OCC-ENUM2CoL” give the run time for the respective algorithms from
Sect. 4.1 and 4.2. The “augmentations” colums give the number of flow augmentations

performed
n m |C| ILP Reed OCC-GRAY OCC-Enum2CoL

time [s] time [s] augmentations time [s] augmentations time [s] augmentations
Afr. #31 30 51 2 0.02 0.00 7 0.00 6 0.00 5
Jap. #19 84 172 3 0.12 0.00 27 0.00 14 0.00 10
Jap. #24 142 387 4 0.97 0.00 117 0.00 46 0.00 31
Jap. #11 51 212 5 0.46 0.00 412 0.00 109 0.00 79
Afr. #10 69 191 6 2.50 0.00 1,558 0.00 380 0.00 97
Afr. #36 111 316 7 15.97 0.01 5,109 0.00 696 0.00 1,392
Jap. #18 71 296 9 47.86 0.05 59,052 0.01 7,105 0.00 568
Jap. #17 79 322 10 237.16 0.22 205,713 0.02 18,407 0.00 1,591
Afr. #11 102 307 11 6248.12 0.79 671,088 0.14 85,851 0.00 1,945
Afr. #54 89 233 12 6.48 5,739,277 0.73 628,445 0.03 20,385
Afr. #34 133 451 13 10.13 6,909,386 1.04 554,928 0.04 16,413
Afr. #52 65 231 14 18.98 22,389,052 1.83 2,037,727 0.01 11,195
Afr. #22 167 641 16 350.00 229,584,280 64.88 15,809,779 0.08 22,607
Afr. #48 89 343 17 737.24 731,807,698 74.20 54,162,116 0.06 41,498
Afr. #50 113 468 18 3072.82 2,913,252,849 270.60 151,516,435 0.05 26,711
Afr. #19 191 645 19 1020.22 421,190,990 3.70 1,803,293
Afr. #45 80 386 20 2716.87 2,169,669,374 0.14 99,765
Afr. #29 276 1058 21 0.23 56,095
Afr. #40 136 620 22 0.80 333,793
Afr. #39 144 692 23 0.65 281,403
Afr. #17 151 633 25 5.68 2,342,879
Afr. #38 171 862 26 1.69 631,053
Afr. #28 167 854 27 1.02 464,272
Afr. #42 236 1110 30 73.55 22,588,100
Afr. #41 296 1620 40 236.26 55,758,998

solve the so-called MINIMUM SITE REMOVAL problem. The results are shown in
Table 1.

As expected, the run time of the iterative compression algorithms mainly
depends on the size of the odd cycle cover that is to be found. Interestingly,
the ILP also shows this behavior. The observed improvement in the run time
from “Reed” to “OCC-GRAY” is lower than the factor of k gained in the worst
case complexity, but clearly still worthwhile. The heuristic from Sect. 4.2 works
exceedingly well and allows to solve even the hardest instances within minutes.
For both improvements, the savings in run time closely follow the savings of flow
augmentations.

5.2 Synthetic Data from Computational Biology

In this section we examine solving the MINIMUM FRAGMENT REMOVAL [18]
problem with GRAPH BIPARTIZATION. We generate synthetic GRAPH BIPAR-
TIZATION instances using a model of Panconesi and Sozi [18], with parame-
ters n = 100, d = 0.2, k = 20, p = 0.02, and ¢ varying (see Table 2). We refer
to [18] for details on the model and its parameters.

Algorithm Engineering for Optimal Graph Bipartization 249

Table 2. Run times in seconds for different algorithms for synthetic MINIMUM FRAG-
MENT REMOVAL instances [18]. Here, ¢ is a model parameter. Average over 20 instances

each
c v |E|] |C]| ILP Reed OCC-Gray OCC-Enum2CoL
2 24 22 1.4 0.02 0.00 0.00 0.00
3 49 58 3.1 1.40 0.00 0.00 0.00
4 75 103 4.8 1538.41 0.02 0.00 0.00
5 111 169 7.7 4.18 0.42 0.04
6 146 247 9.8 5.22 0.68 0.04
7 181 353 13.8 3044.25 238.80 1.89
8 214 447 14.9 4547.54 8.03
9 246 548 16.8 17.41
10 290 697 20.1 744.19

The results are consistent with those of Sect. 5.1. The ILP is outperformed
by the iterative compression algorithms; for OCC-GRAY, we get a speedup by
a factor somewhat below |C| when compared to “Reed”. The speedup from
employing OCC-ENUM2COL is very pronounced, but still far below the speedup
observed in Sect. 5.1. A plausible explanation is the lower average vertex degree
of the input instances; we examine this further in Sect. 5.3. Note that even with
all model parameters constant, run times varied by a factor of up to several
orders of magnitude for all algorithms for different random instances.

5.3 Random Graphs

The previous experiments have established OCC-ENUM2COL as a clear winner.
Therefore, we now focus on charting its tractability border. We use the following
method to generate random graphs with given number of vertices n, edges m,
and odd cycle cover size at most k: Pre-allocate the roles “black” and “white”
to (n — k)/2 vertices each, and “odd cycle cover” to k vertices; select a random

103 ;| | | 1
j oaverage degree 3
] maverage degree 16
02 | +average degree 64
172} 4
©
S 10
8 10" 5 3
[0 3 =
172}
£
g
= 14 E
c
2
107 1 L
8
102 T T T T T T T T

6 8 10 12 14 16 18 20 22 24
Size of odd cycle cover

Fig. 2. Run time of OCC-ENUM2COL (Sect. 4.2) for random graphs of different density
(n = 300). Each point is the average over at least 40 runs

250 F. Hiffner

vertex and add an edge to another random vertex consistent with the roles
until m edges have been added.

In Fig. 2, we display the run time of OCC-ENUM2CoL for different sizes
of the odd cycle cover and different graph densities for graphs with 300 ver-
tices. Note that the actual optimal odd cycle cover can be smaller than the
one “implanted” by our model; the figure refers to the actual odd cycle cover
size k.

At an average degree of 3, the growth in the measurements closely matches
the one predicted by the worst-case complexity O(3%). For the average degree 16,
the measurements fit a growth of O(2.5%), and for average degree 64, the growth
within the observed range is about O(1.7%). This clearly demonstrates the effec-
tiveness of OCC-ENUM2CoL for dense graphs, at least in the range of values
of k we examined.

6 Conclusions

We evaluated the iterative compression algorithm by Reed et al. [20] for GRAPH
BIPARTIZATION and presented several improvements. The implementation per-
forms better than established techniques, and allows to solve instances from
computational biology that previously could not be solved exactly. In particu-
lar, a heuristic (Sect. 4.2) yielding optimal solutions performs very well on dense
graphs. This result makes the practical evaluation of iterative compression for
other applications [3,4,11, 16] appealing.

Future Work.

— Wernicke [22] reports that data reduction rules are most effective for sparse
graphs. This makes a combination with OCC-ENuM2CoL (Sect. 4.2) at-
tractive, since in contrast, this algorithm displays the worst performance for
sparse graphs.

— Guo et al. [11] give an O(2F - km?) time algorithm for EDGE BIPARTIZATION,
where the task is to remove up to k edges from a graph to make it bipartite.
The algorithm is based on iterative compression; it would be interesting to
see whether our improvements can be applied here, and do experiments with
real world data.

— Iterative compression can also be employed to “compress” a non-optimal
solution until an optimal one is found. Initial experiments indicate that
OCC-EnuM2CoL with this mode finds an optimal solution very quickly,
even when starting with C = V, but then takes a long time to prove the
optimality.

Acknowledgements. The author is grateful to Jens Gramm (Tibingen) and
Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke (Jena) for many helpful
suggestions and improvements.

Algorithm Engineering for Optimal Graph Bipartization 251

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

H.-A. Choi, K. Nakajima, and C. S. Rim. Graph bipartization and via minimiza-
tion. SIAM Journal on Discrete Mathematics, 2(1):38-47, 1989.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

F. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and K. Stevens.
An O*(2°)) FPT algorithm for the undirected feedback vertex set problem.
Manuscript, Dec. 2004.

F. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization,
iterative compression, and modeled crown reductions: New FPT techniques, an
improved algorithm for set splitting, and a novel 2k kernelization for Vertex Cover.
In Proc. 1st IWPEC, volume 3162 of LNCS, pages 271-280. Springer, 2004.

R. G. Downey. Parameterized complexity for the skeptic. In Proc. 18th IEEE
Annual Conference on Computational Complezity, pages 147-169, 2003.

R. G. Downey and M. R. Fellows. Parameterized Complezity. Springer, 1999.

M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT.
In Proc. 29th WG, volume 2880 of LNCS, pages 1-12. Springer, 2003.

M. R. Fellows. New directions and new challenges in algorithm design and com-
plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505-520.
Springer, 2003.

N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25(2):235-251, 1996.

D.-J. Guan. Generalized Gray codes with applications. Proceedings of the National
Science Council, Republic of China (A), 22(6):841-848, 1998.

J. Guo, J. Gramm, F. Hiiffner, R. Niedermeier, and S. Wernicke. Improved fixed-
parameter algorithms for two feedback set problems. Manuscript, Feb. 2005.

A. B. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for double-
exposure, bright field alternating phase-shift mask layout. In Proc. Asia and South
Pacific Design Automation Conf., pages 133-138. ACM, 2001.

J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary prop-
erties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230,
1980.

M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and
MaxCut. Journal of Algorithms, 31(2):335-354, 1999.

A. Makhorin. GNU Linear Programming Kit Reference Manual Version 4.7. Dept.
Applied Informatics, Moscow Aviation Institute, 2004.

D. Marx. Chordal deletion is fixed-parameter tractable. Manuscript, Dept. Com-
puter Science, Budapest University of Technology and Economics, Aug. 2004.

R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter al-
gorithms. In Proc. 29th MFCS, volume 3153 of LNCS, pages 84-103. Springer,
2004.

A. Panconesi and M. Sozio. Fast hare: A fast heuristic for single individual SNP
haplotype reconstruction. In Proc. 4th WABI, volume 3240 of LNCS, pages 266—
277. Springer, 2004.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.

B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299-301, 2004.

252 F. Hiiffner

21. R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and fixed-
parameter tractability for the single individual SNP haplotyping problem. In Proc.
2nd WABI, LNCS, pages 29-43. Springer, 2002.

22. S. Wernicke. On the algorithmic tractability of single nucleotide polymorphism
(SNP) analysis and related problems. Diplomarbeit, Univ. Ttbingen, Sept. 2003.

23. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Proc. 5th
International Workshop on Combinatorial Optimization, volume 2570 of LNCS,
pages 185-208. Springer, 2003.

24. X. Zhuang and S. Pande. Resolving register bank conflicts for a network processor.
In Proc. 12th PACT, pages 269-278. IEEE Press, 2003.

Empirical Analysis of the Connectivity
Threshold of Mobile Agents on the Grid*

Xavier Pérez

Dept. Llenguatges i Sistemes, Universitat Politecnica de Catalunya
xperez@lsi.upc.edu

Abstract. This paper gives empirical evidence about the connectivity
properties of moving agents on a grid graph. The theoretical aspects of
the problem were studied asymptotically in [1]. Here, it is proven that
the asymptotical behaviour is also true for real size cases.

1 Introduction

Imagine that we have a set of w agents (for example robots), with cardinal
movement (N/S/W/E), sampling several city levels (ambiental noise, carbon
monoxide, ozone, humidity, etc.). The robots move around the city. At regular
steps of time, they stop, take their samplings, broadcast to the others, and
randomly continue or change direction. The agents communicate with radio-
frequency, using a simple goship protocol. One of the agents has a secondary
station with sufficient power to rely the information of all agents to a base
station. The agents are deployed uniformly at random through the intersections
of the street. We assume the streets of the city are modelled in a grid like pattern.
The first question to be studied is the threshold for connectivity between the
agents; i.e. given the size of the grid and, the maximun distance of broadcast
(as function of the grid size) we wish to estimate the minimun number of agents
we need to insure connectivity. Then we must describe how this connectivity
evolves in a dynamic setting.

For very large parameters, this situation was mathematically modelled in [1].
There, the authors study what they call the walkers model. They consider the
graph G = (V,E), [V] = N = n? to be a n x n grid embedded into a torus
(to avoid considering boundary effects). A set of walkers W with |W| = w and
a “distance” d are given. The walkers are placed uniformly at random (u.a.r.)
and independently on the vertices of G' (a vertex may contain more than one
walker). Two walkers wy and we communicate in one hop if the distance between
the positions of the walkers is at most d. We say that they communicate if they
can reach each other by a sequence of such hops. The walkers move around
the graph, each one performing an independent standard random walk. At each
step they move from their position to any of the 4 neighboring vertices with

* Supported by the EU 6th. FP under contract 001907 (DELIS).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 253-264, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

254 X. Pérez

equal probability. Given f: W — V a random assignment of walkers into V', we
define the graph of walkers, G;[W]. The vertices of G[W] are the vertices of G
that contain at least one walker (occupied vertices), and two vertices in G [W]
are joined by an edge iff they are at distance at most d in G. Components in
G;[W] are connected components in the usual graph theory sense. A simple
component is an isolated vertex (i.e. an occupied vertex with no other walkers
within distance d). In the first part, the paper [1] studies the probability of G s [W]
being connected, the number of components and their sizes, under certain mild
asymptotic restrictions on w and d. In the second part, the paper studies the
dynamic situation, where, from an initial placement of walkers, at each time step,
every walker simultaneously moves onto a randomly selected neighbour vertex in
G. They provide characterisations of the probability of creation and destruction
of connected components, and use it to give estimations of the expected lifespan
of connected components and the expected time the graph of walkers remains
connected (or disconnected).

In this paper we validate empirically the asymptotics results in [1] for grids
of reasonable size. In particular for the static case we deal with grids of size
N = 1000 x 1000, N = 3000 x 3000 and N = 10000 x 10000. For the dynamic
case, the size is N = 1000 x 1000. The experiments show that the behaviour of
the model is not far in most cases from the theoretical predictions.

Although several aspects communication of moving agents in networks have
been studied, in particular efficient protocols for communication, not that much
has been done for studying experimentally connectivity properties of moving
agents in the grid. In [4], the authors present algorithms for computing coverage
properties of sensors in a random geometric graphs, but the results are of a very
different nature than the one presented in this paper. More work has been done
on experimentation for protocols and communication for mobility of agents (see
for example [3, 2]) or with transmission power performance [5], but none that this
author is aware, for estimating the evolution of the properties of the connectivity
graph, as agents move simultaneously.

Through the paper, K is the number of connected components in G ¢[W] and
X the number of simple components. Let ¢ = w/N denote the expected number
of walkers at a vertex. Let h be the number of vertices in the G within distance
greater than 0 and at most d from any given one. We do the experiment for the
Manhatan distance (¢* norm) and in this case h = 2d(d + 1). Equivalent results,
modulo a constant, can be obtained for distances defined from other norms, in
particular the euclidian distance.

2 Static Properties

In [1], parameters w and d are considered as functions of N and the results
are asymptotic for N growing large. They require w — oo in order to avoid
small-case effects. Furthermore, they assume that w < Nlog N + O(N) and
that h = o(N) (or d = o(n)) since otherwise the graph G[WW] is asymptotically
almost surely (a.a.s.) connected.

Empirical Analysis of the Connectivity Threshold of Mobile Agents 255

Let u be the expected number of simple components. Under the mild restric-
tions above, the following theorems are proved in [1]:

Theorem 1. The expected number u of simple components satisfies

p~N(1—e?) (1—}@)1”

Furthermore, if pu is bounded then X is asymptotically Poisson with mean u,
whilst if p is bounded away from 0 then (1 — %)w ~ e~ and we have p ~
N (1—e 9)ehe,

Theorem 2.

o For 1 — oo, Gf[W] is disconnected a.a.s.

e For p=06(1), then K =1+ X a.a.s., and X is asymptotically Poisson.
e For p— 0, G¢[W] is connected a.a.s.

These results, provide a sharp characterisation of the connectivity in the static
case and show the existence of a phase transition when p = ©(1). At this point,
just a finite number of simple components exist (following a Poisson distribution)
and the remaining walkers belong to one single component which is called the
giant component.

From Theorem 1, the relationship between w and h (or d) at the threshold
can be easily computed. One observes that a larger amount of walkers implies
a smaller h (or d) and viceversa. For instance, some usual situations can be
summarized in the following

Proposition 1. In the case yu ~ N(1 — e~ 9)e~"¢ = (1), then

1. h=06(1) iff w=O(NlogN),

2. h=0(logN) iff w=6O(N),

3. hz@(NC) iff w=6O(N'"logN), for0 <c<1,
4. h:@(IOgN) iff w= O(log Nloglog N).

Proof. If we apply logarithms to the asymptotic expression of u, we obtain that
log N(1—e72) = hp+ ©O(1). Then, by taking into account the initial restrictions
imposed to w and h, the proof is immediate. a

In this paper, we test experimentally these results for some interesting values
which may arise in real life. We deal with grids of sizes N = 10002, 3000? and
100002. We study each case for d’s of several shapes ranging from a constant to
a function growing large slightly slower than n. For each pair N, d, we choose
the amount of walkers w that makes N(1 —e~¢)e~"¢ = log 2. (Since w must be
an integer, we choose the closest one.) A summary of these parameters can be
found in Table 1.

Note that we are demanding p = log2 because the condition p = (1) is
purely asymptotic and makes no sense for fixed values of N. The reason for
choosing log 2 in particular is that then, according to the theoretical results,
the number of simple components should be roughly Poisson with expectation

256 X. Pérez

Table 1. Parameters at the phase transition (u = log?2)

N = 1000 x 1000[N = 3000 x 3000]N = 10000 x 10000
d constant |d =3 d=3 d=3

w = 555377 w = 5866110 w = 75639720
d=logn |[d=T7 d=38 d=9

w = 106128 w = 875018 w = 9079434
d=n'? |d=10 d=14 d=22

w = 50804 w = 275985 w = 1436466
d=n'? |d=32 d=55 d =100

w = 4113 w = 14538 w = 55931
d=n*3 |d=100 d =208 d = 464

w = 301 w="719 w = 1825
d=n/logn|d =145 d =375 d = 1086

w =122 w =177 w = 249

log 2. This makes the probability of G;[W] being connected (or disconnected)
be around 1/2.

For each triple of parameters N, w and d previously described, we exper-
imentally place uniformly at random (u.a.r.) w walkers on a grid of size N,
check whether G;[W] is connected or not, and count the number of occu-
pied vertices, the number of components, the size of the biggest component
and the average size of the remaining ones. We repeat this experiment inde-
pendently 100 times and take averages of the observed magnitudes. Then we
compare the obtained data with what we would expect according to the theoret-
ical results. In fact, for large N, these magnitudes approach the expressions in
Table 2.

Table 2. Asymptotic expected values for N growing large

Occupied vertices N(1—e79)
Probability that G;[W] is connected |[e™#

Number of components 1+p

Size of the biggest component N(l—-e%)—p
Average size of the other components|1

For each particular run of our experiments, our algorithm must assign at
random grid coordinates (7, j) to each walker. It is convenient to store this data
in a Hashing table of size w instead of using a n X n table in order to optimize
space resources. By doing this we don’t loose much time efficiency, since the cost
of checking wether a given vertex is occupied remains constant in expectation. We
use then a Depth-First-Search to find all components. The whole algorithm takes
expected time ©(wh) (since for each walker we examine all the grid positions

Empirical Analysis of the Connectivity Threshold of Mobile Agents 257

within distance d) and requires space ©(w). Moreover, as we are testing it in
situations where wh ~ N logw, the time is roughly proportional to N besides
logarithmic factors.

Tables 3, 4 and 5 contrast the averages of the experimental results with the
asymptotic expected values (see Table 2) for the selected parameters.

Table 3. Contrasted results at the phase transition for N = 1000 x 1000

N = 1000 x 1000 Experimental average|Theoretical value
Occupied vertices 426140.57 426144.12

d=3 Probability of connectivity 0.54 0.50
Number of components 1.68 1.69

w = 555377 |Size of the biggest component 426139.80 426143.43
Average size of other components|1.14 1
Occupied vertices 100674.83 100690.47

da=7 Probability of connectivity 0.40 0.50
Number of components 1.89 1.69

w = 106128(Size of the biggest component 100673.72 100689.78
Average size of other components|1.23 1
Occupied vertices 49533.84 49535.06

d=10 Probability of connectivity 0.39 0.50
Number of components 1.95 1.69

w = 50804 [Size of the biggest component 49532.60 49534.36
Average size of other components|1.31 1
Occupied vertices 4104.37 4104.55

d =32 Probability of connectivity 0.37 0.50
Number of components 1.97 1.69

w = 4113 [Size of the biggest component 4102.96 4103.86
Average size of other components|1.53 1
Occupied vertices 301.00 300.95

d =100 Probability of connectivity 0.36 0.50
Number of components 2.16 1.69

w = 301 Size of the biggest component 298.52 300.27
Average size of other components|2.02 1
Occupied vertices 122.00 121.99

d =145 Probability of connectivity 0.19 0.50
Number of components 2.38 1.69

w = 122 Size of the biggest component 118.05 121.30
Average size of other components|2.69 1

What we described so far accounts for the situation at the phase transition.
However, we also want to verify experimentally that there is indeed a phase
transition. We consider only the case N = 3000 x 3000 and deal with the same
types of d as before (i.e. d =constant, d = logn, d = n'/3, d = n'/?, d = n?/3
and d = n/logn). For each d, we consider 10 different values for w, ranging
from wp/5 to 2wy and equidistant, where wg is the amount of walkers needed
to have p = log2 (see Table 1). (As before, all these quantities are rounded
to the nearest integer.) For each triple of parameters N, w and d, we sample
at random again 100 independent instances of G;[W] and check whether they
are connected. The probability of connectivity can be estimated from the ratio
between connected outputs and the total number of trials.

Since we are just concerned with connectivity, we can slighly modify our
previous algorithm to improve time performance. Given a random arrangement
of walkers in the grid G stored as before in a Hashing table, we first examine the

258 X. Pérez
Table 4. Contrasted results at the phase transition for N = 3000 x 3000

N = 3000 x 3000 Experimental average|Theoretical value
Occupied vertices 4309968.88 4309990.64

d=3 Probability of connectivity 0.49 0.50
Number of components 1.67 1.69

w = 5866110(Size of the biggest component 4309968.18 4309989.95
Average size of other components|1.05 1
Occupied vertices 833825.19 833827.19

d=28 Probability of connectivity 0.37 0.50
Number of components 1.87 1.69

w = 875018 [Size of the biggest component 833824.16 833826.49
Average size of other components|1.22 1
Occupied vertices 271795.67 271796.38

d=14 Probability of connectivity 0.39 0.5
Number of components 1.86 1.69

w = 275985 [Size of the biggest component 271794.6 271795.69
Average size of other components|1.25 1
Occupied vertices 14525.60 14526.26

d =55 Probability of connectivity 0.41 0.5
Number of components 1.86 1.69

w = 14538 |[Size of the biggest component 14524.48 14525.57
Average size of other components|1.34 1
Occupied vertices 718.97 718.97

d = 208 Probability of connectivity 0.29 0.50
Number of components 2.10 1.69

w =719 Size of the biggest component 717.16 718.28
Average size of other components|1.58 1
Occupied vertices 176.99 177.00

d =375 Probability of connectivity 0.28 0.50
Number of components 2.29 1.69

w =177 Size of the biggest component 174.20 176.31
Average size of other components[1.98 1

existence of simple components. We run along the table and, for each unmarked
walker, we look for another walker within distance d and mark both as “not in
a simple component”. If we detect one isolated walker (a simple component), we
stop and output disconnected. Otherwise, we perform as before a Depth-First-
Search to find all components. In the worst case, the algorithm has the same
complexity as the previous one, but if G;[W] has some simple components, we
may be lucky and have a quick output. This proves quite useful for our particular
kind of graphs since simple components are very common.

The plots in Figs.1, 2 and 3 show for each grid of size N and distance d, the
evolution of the probability that G ¢[W] is connected as we increase the amount
of walkers. The dots correspond to the experimental values we obtained. In
contrast, the curves show the theoretical value of this probability according to [1].
This is asymptotically e™*, where the expression of p is given in Theorem 1.

We were using for the tests, the joint effort of 10 computers with the following
power:

— Processor: AMD K6(tm) 3D processor (450 MHz)
— Main memory: 256 Mb

Empirical Analysis of the Connectivity Threshold of Mobile Agents

Table 5. Contrasted results at the phase transition for N = 10000 x 10000

N = 10000 x 10000 Experimental average|Theoretical value
Occupied vertices 8679487.90 8679449.86

d=9 Probability of connectivity 0.52 0.5
Number of components 1.71 1.69

w = 9079434 [Size of the biggest component 8679487.05 8679449.16
Average size of other components|1.23 1
Occupied vertices 1426204.88 1426198.05

d=22 Probability of connectivity 0.40 0.50
Number of components 1.89 1.69

w = 1436466 |Size of the biggest component 1426203.82 1426197.36
Average size of other components|1.19 1
Occupied vertices 55915.73 55915.36

d = 100 Probability of connectivity 0.38 0.50
Number of components 1.97 1.69

w = 55931 [Size of the biggest component 55914.51 55914.67
Average size of other components|1.3 1
Occupied vertices 1824.97 1824.98

d = 464 Probability of connectivity 0.37 0.50
Number of components 2.04 1.69

w = 1825 Size of the biggest component 1823.39 1824.29
Average size of other components|1.48 1
Occupied vertices 249.00 249.00

d = 1086 Probability of connectivity 0.33 0.50
Number of components 2.23 1.70

w = 249 Size of the biggest component 246.25 248.30
Average size of other components|2.32 1

2.1

Conclusions for Static Case

259

Our experimental results show that the qualitative behaviour of the walkers
model sticks reasonably well to the theoretical predictions. In fact, we observe a
clear threshold phenomenon on the connectivity property even though in some
cases the observed critical point is slightly displaced from its theoretical loca-
tion. Furthermore, at the phase transition, we observed that there is indeed one
giant component consisting of the vast majority of walkers, and a few small
components (not far from being simple in most cases).

From a quantitative point of view, the accuracy of our predictions is dramat-
ically better for small d’s. This is probably due to the fact that, at the phase
transition, a smaller distance d requires a bigger amount of walkers w, and we
recall that the asymptotic results in [1] require w — oo as a regularity condition.
For instance, in our last case where d = n/logn, the corresponding w is essen-
tially logarithmic on N. Then, we may need to consider exponentially huge grid
sizes in order to have a big amount of walkers and get reliable predictions.

Strangely enough, for the cases we considered, the accuracy of the predictions
does not seem to improve significantly as we increase the grid size N from 10° to
108. Possibly the improvement is too small to be detected within the precision
of our experiments. We could always perform more trials for each test, or we
could even consider much bigger values of N, but this last is beyond our current
computational means.

260 X. Pérez
e o @ 1 - .- °
. d=3 ¢ M > d=8 o *
£ 5
s s
5 0.8 8 0.8
g g
c H
5 06 S 06 H
Q Q
G — H
o [] o i
:g? 04 .€210,4 r ;I
= = i
i) 2
< <
i% 0.2 '8 0.2
- b
-9 ¥
O @ e @ O @@ @@
2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06
Value of w alue of w
Fig. 1. Threshold of connectivity
1 { 3 SRR SRR R Ir e ®
- d=14 . . d=55 ®
2 2 -
= o= r)
> >
508 508
Q Q
Q Q
: :
S 06f S 06t
Q 9 H
[[i
S 4 5
> 04 > 04+ i
j) = i
= |
2 2
< <
'ég 02 18 0.2 ;
= = ;
¥ ~
O @ @ @ @ O @@ @

.
300000 400000

Value of w

.
100000 200000

.
500000

.
5000

10000

15000 20000 25000 30000

Value of w

Fig. 2. Threshold of connectivity

3 Dynamic Properties

Assume that from an initial random placement f of the walkers, at each time
step, every walker moves from its current position to one of its 4 neighbours,
with probability 1/4. This is a standard random walk on the grid for each walker.

A configuration is an arrangement of the w walkers on the vertices of G.
Consider the graph of configurations, where the vertices are the N" different
configurations. The dynamic process can be regarded as a random walk on the
graph of configurations and, in particular, as a Markov chain.

Let Gy, [W] denote the graph of walkers at time ¢t. Note that the the walk-
ers are u.a.r. arranged at the initial configuration and that this property stays
invariant throughout the process. Hence, for any fixed ¢, we can regard Gy, [W]
as Gf[W] in the static case. Thus, if 4 — 0 (or g — o0) then, for ¢ in any
fixed bounded time interval, Gy,[W] is a.a.s. connected (or a.a.s. disconnected).
So, for the remaining of the section, we restrict our atention to the phase
transition (u ©(1)) since we wish to study only the nontrivial dynamic
situations.

Empirical Analysis of the Connectivity Threshold of Mobile Agents 261

1t PRI o v 4 ame R
. d =208 . L . d=375 @ @
£ 1 Z e
Z 2 e
S o8 Z 08
2 ‘o g
IS g
S 06t S 06t
5] S
o K [
S ©
204 ‘e o4
= =
8 B .
So2 So2
2 : 2
[y e [y
O f @@ @ 0f @@ @
200 400 600 800 _ 1000 1200 1400 50 100 150 200 250 300 350
Value of w Value of w

Fig. 3. Threshold of connectivity

In [1], is provided a full characterisation of the dynamic evolution of the
system at the phase transition. As a consequence of the results obtained in the
static section, it suffices to study the behaviour of the simple components.

We say that a simple component dies at vertex v between times ¢ and ¢ +
1 if at time ¢ there is a simple component on v, but at time ¢t 4+ 1 none of
the neighbors of v is a simple component (i.e. either the walkers in v jump
towards different directions and the component grows larger or they join another
component nearby). Similarly, we say that a simple component is born at vertex
v between times ¢t and ¢ 4+ 1 if at time ¢ none of the neighbors of v is a simple
component, but at time ¢+ 1 there is one on v. And finally, we say that a simple
component survives at vertex v between times ¢ and ¢ + 1 if at time ¢ there is a
simple component on v, and all walkers there jump onto the same neighbor and
stay incommunicated from the other ones.

Let B(t), D(t) and S(t) denote the number of births deaths and survivals
between times ¢ and t 4 1. They are asymptotically determined by the following
theorem, provided in [1]:

Theorem 3. For t in any fized bounded time interval, the random variables
S(t), B(t) and D(t) are asymptotically jointly independent Poisson, with the
expectations

] do — 0, 2dop do — 0,
E[S@H)]~qpn—A do—c, E[BM)]=E[D®)]~{A do — ¢,
lpe =Gt Dey g oo, g do— oo,

where A = (1 — e_2d9) w. Here 0 < A < p for do — c.

This result has many important consequences and is the main tool for charac-
terising the dynamic behaviour of Gy, [W].

For one particular history of the dynamic process, let us define T as the av-
erage number of steps that G, [WW] remains connected from each time it becomes
so, after a disconnected period (i.e. the average length of the connected periods).
Similarly, let Tp be the average length of the disconnected periods. Also in[1] is

262 X. Pérez

the following theorem, which gives the expectation of these two random variables
averaged over all possible histories of the process. It is an important non-trivial
consequence of Theorem 3.

Theorem 4. Let \ be defined as in Theorem 3. Then, E[Tc] ~ —— and
E[Tp] ~ £=.

Our aim in this section is to validate experimentally the asympotic result in
Theorem 4. We deal with grids of size N = 1000 x 1000 and we consider the
parameters d and w listed in Table 1.

For each triple N, w and d, we experimentally place the walkers on the grid
u.a.r. as in the static situation, but then we perform 7" dynamic steps, for some
big enough chosen T'. We examine the connectivity of G, [W] at each time step,
measure the length of the different periods we encounter in which Gy, [W] is
(dis)connected, and then take the average. This accounts for the average time
Gy, [W] remains (dis)connected for this particular history between times 0 and
T. We repeat this experiment independently 50 times and take the average of
the averages. We choose T' to be about 500 times the final value we expect to
get. In our cases, this ranges from 1000 to 20000 depending on the parameters
N, w and d (see last column in Table 6).

Our algorithm is an easy extension of the one used for the static situation.
For each walker we choose its grid coordinates at random and store them in a
Hashing table of size w. To perform a dynamic transition, we just need to run
along the walkers and move each one to any of the 4 neighboring grid positions
with equal probability. This has expected complexity ©(w) since the expected
time for search, insertion and removal in the table is constant. Besides, we must
look at the connectivity at each time step, and the same observations we made
in §2 apply here. (It is of great help checking the existence of simple components
first, since it is usually much faster, and it is a sufficient condition for non-
connectivity.) Hence, the algorithm requires space ©(w) and takes time O(Twh),
but it usually runs much faster at the steps when Gy, [W] is disconnected.

We used the same machines and system of computation as for the static case,
and the results are summarised in Table 6.

3.1 Conclusions for Dynamic Case

The experimental values obtained for E [T¢] and E [Tp] are in all cases of the
same order of magnitud as the values predicted by the theoretical model. How-
ever, the level of accuracy is much higher for the smaller values of d and gets
poorer for the largest d’s, exactly as in the static situation. Again the reason
may be that in these last cases, the considered amount of walkers w is quite
small, while in [1] w is required to grow to infinity.

We observe as well that the average length of the disconnected periods is
larger than that of the connected periods and it is much closer to the predicted
value. Here is a plausible explanation to this: We were studying situations where
ideally in the limit there should be one giant component and an average of
@ = log2 small (indeed simple) components. In this case the probability of

Empirical Analysis of the Connectivity Threshold of Mobile Agents 263

Table 6. Contrasted results for the dynamic proccess (N = 1000 x 1000)

N = 1000 x 1000 Experimental average|Theoretical expectation
d=3 Time Gy, [W] stays connected 1.93 2.05
w = 555377|Time G, [W] stays disconnected|2.14 2.05
d=7 Time Gy, [W] stays connected 2.05 2.41
w = 106128 | Time G, [W] stays disconnected[2.70 2.41
d=10 Time Gy, [W] stays connected 2.28 2.79
w = 50804 [Time G, [W] stays disconnected[3.17 2.79
d =32 Time Gy, [W] stays connected 4.89 6.75
w = 4113 [Time Gy, [W] stays disconnected|[7.56 6.75
d =100 Time Gy, [W] stays connected 14.14 25.36
w = 301 Time Gy, [W] stays disconnected|27.86 25.13
d =145 Time Gy, [W] stays connected 18.97 41.80
w = 122 Time Gy, [W] stays disconnected|55.20 42.09

Table 7. New predictions, using the observed average number of non-giant components
instead of u

N = 1000 x 1000 Experimental average|Modified prediction
d=3 Time Gy, [W] stays connected |1.93 2.08
w = 555377 Time G, [W] stays disconnected[2.14 2.02
d=7 Time Gy, [W] stays connected 2.05 2.01
w = 106128 [Time G, [W] stays disconnected[2.70 2.88
d=10 Time Gy, [W] stays connected 2.28 2.20
w = 50804 |Time Gy, [W] stays disconnected|3.17 2.49
d =32 Time Gy, [W] stays connected 4.89 4.97
w = 4113 [Time Gy, [W] stays disconnected|7.56 8.15
d =100 Time Gy, [W] stays connected 14.14 15.26
w = 301 Time Gy, [W] stays disconnected|27.86 33.42
d =145 Time Gy, [W] stays connected |18.97 21.35
w = 122 Time Gy, [W] stays disconnected[55.20 63.51

connectivity would be P (K =1) = e # = 1/2, and moreover we would have
E[Tc] = 15 = £=5 = E[Tp]. But as shown in Figs.1, 2 and 3 the real
observed probability of connectivity is mostly below the theoretical predictions
at the limit, and this fact is stressed for the largest values of d. This is the same
as saying that the phase transition occurs slightly afterwards for the observed
cases than in the theoretical limit, or equivalently that the observed amount
of non-giant components is slightly bigger than what we would asymptotically
expect. This explains why in our experiments E [T¢] < E [Tp].

We note that this deviation between the observed number of non-giant com-
ponents and pu, gets amplified in the expressions of E [T¢] and E [Tp] since p
appears there exponentially. So let’s try the following: let us use the average
number of non-giant components we observed (see Table 3) as the value of y in
the expressions in Theorem 4. Then, in Table 7 we compare the obtained values
with our observations. The new predictions turn out to be much closer to the
experimental quantities.

This gives reasonable evidence for the validity of Theorem 4, but also restricts
its applicabilaty to the cases where the number of non-giant components is close
to the expected number p of simple components in the limit.

264 X. Pérez

4 Further Problems

Similar theoretical work has already been done for agents moving on the cy-
cle and the hypercube. Currently, asymptotic results are being studied on the
behaviour of a dynamically evolving random geometric graph, which models a
generic type of Mobile Ad hoc Network. Since, from a practical point of view,
the cycle has no interest for the empirical study of real life size networks, we
intend to continue the research for the hypercube and the random geometric
graphs.

References

1. J. Diaz, X. Pérez, M. Serna and N. C. Wormald, The walkers problem on the cycle
and the grid. Proc. of 22nd Annual Symposium on Theoretical Aspects of Computer
Science, 353-364, 2005

2. A. Jardosh, E. Belding-Royer, K. Almeroth and S. Suri. Towards Realisitic Mobility
Models for Mobile Ad hoc Networks. ACM Mobicom, San Diego, 2003.

3. E. Jennings and C. Okino, On the diameter of sensor networks. Preceedings of the
IEEE Aerospace Conference, Montana, 2002.

4. S. Meguerdichian, F. Coushanfar, M. Potkonjak and M. B. Srivastava, Coverage
problems in wireless ad-hoc sensor networks. Proc. of INFOCOM, 1380-1387, 2001.

5. E. M. Royer, P.M. Melliar-Smith and L. E. Moser, An anlysis of the optimum node
density for ad hoc mobile networks Proc. of IEEE International Conference on
Communications, 857-861, 2001.

Multiple-Winners Randomized Tournaments
with Consensus for Optimization Problems in
Generic Metric Spaces

Domenico Cantone, Alfredo Ferro, Rosalba Giugno,
Giuseppe Lo Presti, and Alfredo Pulvirenti

Dipartimento di Matematica e Informatica,
University of Catania, Viale A. Doria,
6, 95125 Catania, Italy
{cantone, ferro, giugno, apulvirenti}@dmi.unict.it
http://www.dmi.unict.it/~ctnyu/

Abstract. Extensions of the randomized tournaments techniques in-
troduced in [6,7] to approximate solutions of 1-median and diameter
computation of finite subsets of general metric spaces are proposed. In
the linear algorithms proposed in [6] (resp. [7]) randomized tournaments
are played among the elements of an input subset S of a metric space. At
each turn the residual set of winners is randomly partitioned in nonempty
disjoint subsets of fixed size. The 1-median (resp. diameter) of each sub-
set goes to the next turn whereas the residual elements are discarded.
The algorithm proceeds recursively until a residual set of cardinality less
than a given threshold is generated. The 1-median (resp. diameter) of
such residual set is the approximate 1-median (resp. diameter) of the in-
put set S. The O(nlogn) extensions proposed in this paper replace local
single-winner tournaments by multiple-winners ones. Moreover consen-
sus is introduced as multiple runs of the same tournament. Experiments
on both synthetic and real data show that these new proposed versions
give significantly better approximations of the exact solutions of the cor-
responding optimization problems.

1 Introduction

Solutions of optimization problems in generic metric spaces are crucial in the
development of efficient algorithms and data structures for searching and data
mining [13,17]. Examples of such optimization problems are clustering [3], 1-
median [6], and diameter computation [7].

The 1-median of a set of points S in a metric space is the element of S
whose average distance from all points of S is minimal. This problem is known
to be 2(n?) [16]. In [16], Indyk proposed a provably correct linear (1 + §)-
approximation algorithm for the 1-median problem, with an O(n/6°) running-
time. However, Indyk’s solution, based on large sampling, turns out not to be
practical. In [6], Cantone et al. proposed a practical linear randomized approx-
imate algorithm —here referred to as the Single-Winner 1-median algorithm —

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 265-276, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

266 D. Cantone et al.

which outperforms Indyk’s solution in practice. The Single-Winner 1-median
algorithm elects as approximate l-median of a given input set S the winner
of the following randomized tournament played among the elements of S. At
each turn, the elements which passed the preceding turn are randomly parti-
tioned into disjoint subsets, say Xi,...,Xk. Then, each subset X; is locally
processed by a procedure which computes its exact 1-median x;. The result-
ing elements x1,...,x; move to the next turn. The tournament terminates
when the number of residual winners falls under a given threshold. The ex-
act local 1-median of the residual set is taken to approximate the exact 1-
median of S.

The diameter of a set S of points in a metric space is the maximum distance
among all pairs of elements in S. As observed in [16], one can construct a metric
space where all distances among points are set to 1 except for one (randomly
chosen) distance, which is set to 2. Thus, any algorithm which computes the
diameter with an approximation factor strictly greater than % must necessarily
examine all pairs. A randomized algorithm — here referred to as the Single-Winner
diameter algorithm — has been proposed in [7]. The Single-Winner diameter algo-
rithm, based on the computation of local diameters, plays the following random-
ized tournament among the elements of the input set S. As before, at each turn
the winners of the previous turn are randomly partitioned into disjoint subsets,
say Xi,...,Xk. The endpoints of the diameter of each round X; are the winners
of the current turn. The tournament terminates when the number of residual
elements falls under a given threshold. The farthest pair of the residual set is
the Antipole pair and its distance is taken to approximate the diameter of the
initial set S.

The 1-median and diameter problems for generic metric spaces find important
applications in such areas as molecular biology [15], network management [1,5,
10], and information retrieval [12]. Among their most relevant applications here
we cite:

- approzimate queries with a given threshold on very large databases of objects
belonging to clustered metric spaces. In such a problem, one seeks clusters
whose representatives have distance from the query bounded by the thresh-
old. It turns out that if the 1-medians are selected as representatives of the
clusters and the clusters diameters are comparable with the threshold, then
the average error during the search is minimized with very high probabil-
ity [8,9];

- k-clustering of metric spaces, in which iterative computations of 1-medians
and diametrical pairs are required [11, 14];

- multiple sequence alignment, in which the goal is to find a common alignment
of a set of genetic sequences [15] (this is a basic problem in biological data
engineering).

In this paper we propose some improvements on the randomized tournament
techniques for the 1-median and diameter computations.

Multiple-Winners Randomized Tournaments with Consensus 267

The first idea is aimed at avoiding early elimination of good candidates in
the initial phases of the tournament. This is achieved by enlarging the number of
local winners. We call the resulting algorithms Multiple-Winners variants of the
original Single-Winner 1-median and diameter algorithms. The second idea is to
also use consensus [18,19], which consists in extracting the best solution from
several runs of the algorithm. We call the resulting algorithms Multiple-Winners-
With-Consensus variants of the original ones. Of course, the Multiple-Winners-
With-Consensus variants require more computational resources. In particular,
O(nlogn) distance computations are needed instead of the O(n) distance com-
putations required by the Single-Winner versions. However, it turns out from
the experimental results that improvements in precision very much justify the
slightly higher computational costs. More precisely, a thorough comparison has
been carried out between the original Single-Winner randomized tournament al-
gorithms with the newly proposed Multiple-Winners-With-Consensus variants, us-
ing both synthetic and real data sets. Synthetic data consisted of sets of randomly
chosen points from highly dimensional Euclidean spaces with different distribu-
tions. Real data included strings from the Linux dictionary and image histogram
databases extracted from the Corel Image database [2]. All experimental results
showed that our newly proposed algorithms perform considerably better than
the old versions.

2 Approximate Single-Winner 1-Median and Diameter
Computation

In this section, we review the randomized algorithm for the approximate 1-
median (resp. diameter) computation given in [6] (resp. [7]).

Let (M, dist) be a metric space and let S be a finite set of points in M.
The I-median of S is an element of S whose average distance from all points
of S is minimal. The farthest pair of S is a pair of points A, B of S such that
dist(A, B) > dist(x,y), for z,y € S. The distance of the farthest pair A, B is the
diameter of S.

The algorithm proposed in [6] (resp. [7]) is based on a randomized tourna-
ment played among the elements of an input set S taken from a given metric
space (M, dist). At each turn, the elements which passed the previous turn are
randomly partitioned into subsets (rounds), say X7, ..., Xj, having the same size
t, with the possible exception of only one subset, whose size must lie between
(t +1) and (2t — 1). Then, the exact 1-median x; (resp. farthest pair (a;,b;))
of each subset X; is computed, for ¢ = 1,..., k. The elements z1,...,zx (resp.
the points (a1,b1), -..,(ak,bx)) win the round and go to the next turn. When
the number of residual elements falls below a given threshold, the exact local
1-median (resp. farthest pair) of the residual set is taken as the approximate
1-median (resp. farthest pair) of S. Plainly, the requirement that no round is
played with less than t elements is useful to ensure statistical significance of the
tournament.

268 D. Cantone et al.

In [6] (resp. [7]), it is shown that such algorithm has a worst-case complexity

of sn—+o(n) (resp. ;Ei:g n—+o(n)) in the input size n, provided that the threshold

is o(y/n).

3 Multiple-Winners Extensions

In this section, we propose improvements of the algorithms described above,
starting from the following observation. If only few good candidates participate
to the same round, they might be discarded early with a high probability. Thus,
to avoid such loss of information, more elements must be promoted at each
round.

3.1 Approximate Multiple-Winners 1-Median Computation

In the Multiple-Winners version of the 1-median computation, each round r of
the tournament is played among 2¢ elements. Let us define the weight dis-
tance of an element x as the sum of the distances between x and all other
elements playing in the same round. We sort the elements in X, with respect
to the weight distance in increasing order and we define T, as the sequence
of the first ¢ elements in such ordering. Let H; be the set of i-th compo-
nents of the sequences T,. Intuitively, elements belonging to H; with lower
index ¢ have higher probability to approximate the exact 1-median. Elements
in all H; are promoted to the next turn. The tournament terminates when the
number of residual winners falls under a given threshold. The exact local 1-
median of the residual set is taken to approximate the exact l-median of S.
We assume that the parameter threshold, which bounds the number of resid-
ual winners, has been set to min {4t — 1, [/n|}, where n is the size of the in-
put set S.
A high level description of our proposed algorithm is the following.

1. Given a set S of elements and a tournament size ¢, partition S into subsets
X, of size 2t, with the possible exception of only one subset whose size must
lie between (2t 4+ 1) and (4¢ — 1);

2. For each subset X,.:

(a) Compute the weight distance w(z, X) = 3_ .y dist(y,z), for x € X.
(b) Sort the elements in X, with respect to the weight distance in increasing

order and let T be the sequence of the first ¢ elements in such ordering.
(C) Hz = Hi U{(Tr)z} for i = 17 N ,t.

3. If |Hy| > threshold/t then partition |JI_, H; into subsets X,. of size 2t each,
taking two random elements from each bucket H;. All the subsets X, will
have 2t elements with the possible exception of only one subset of size 3t.
Go to step 2.

4. Tf |H,| < threshold/t then return the exact 1-median of | J'_, H;.

Next we analyze the computational complexity of our proposed algorithm.

Multiple-Winners Randomized Tournaments with Consensus 269

Complexity Analysis. Let G(n,t, threshold) be the number of rounds com-
puted at step 2 of Multiple-Winners 1-median algorithm, with an input of size
n, and using the parameters ¢ > 2 and threshold > 1. An upper bound for
G(n,t, threshold), denoted with G;(n), satisfies the following recurrence
relation:

0 ifo<n<1
Gi(n)=4¢1 if2<n<4t
12n/t] + Gy(|n/2t]t) ifn>4t.

By induction on n, we can show that G1(n) < |n/t]. For n < 4, our estimate
is trivially true. Thus, let n > 4¢. Then by inductive hypothesis, we have

= 3]+ (13 < 5+]~ U151 <)

The number of distance computations made at each round isequal to y | l):(l‘ (i—1) =
%. Each round of the first turn has size 2¢, with the possible exception
of the last round, which can have size between (2t 4+ 1) and (4t — 1). In the
successive turns we may have a round of size 3t. Since there are [log, n] rounds,
it follows that the total number of distances computed by an execution of our
algorithm, with |S| = n, a constant tournament size 2¢, and a threshold ¥, is

upper bounded by the expression

G(n,t,9) - t(2t — 1)+W+ [logyn — 1] - M —2(t—1)
+ G-1D0-2 =n(2t — 1) + O(logn + 9?).

2

3.2 Approximate Multiple-Winners Diameter (Antipole)
Computation

In the Multiple-Winners version of the diameter computation, we replace local
farthest pair computation with the generation (in the style of [14]) of the far-
thest sequence T of ¢ points starting with the two diameter endpoints. More
precisely, each round r of the tournament is played among 2t elements. If py, po
are the two diameter endpoints of X,., p;y1 is the element of X, which maxi-
mizes the minimum distance from py,...,p;, for each i = 2,..., ¢t — 1. Let T,
be the ordered sequence p1,...,p;. Let H; be the set of i-th components of the
sequences T,.. We require that elements in all H; are promoted to the next turn.
The tournament terminates when the number of residual elements falls under
a given threshold. The farthest pair computed in the tournament is taken to
approximate the diameter endpoints of the initial set S. We assume that the
parameter threshold, which bounds the number of residual winners, has been set
to min {4t — 1, |\/n]}, where n is the size of the input set S.

270 D. Cantone et al.

A high level description of our proposed algorithm is the following.

—_

. Set a variable d;,q, = 0 and Pz = 0.

2. Given a set S of elements in a metric space, randomly partition the input set
S into subsets X,. of size 2t, with the possible exception of only one subset
whose size lies between (2¢ + 1) and (4¢ — 1).

3. For each subset X,.:

(a) let a, b the diameter endpoints of X,. and let d = dist(a, b);

(b) if d > dpmar then dpmaz = d; Pmaz = {a,b};

(c) set T=[a,b]; Hy = Hy J{a}; H» = HaU{b};

(d) fori=2tot—1:

i. let ¢ be the point in X, \ 7" which maximize the minimum distance
from elements of T';

ii. add c to the end of T H; = H; U {c}.
4. If |Hy| > threshold/t then partition U ., H; in subsets X, of size 2t each

taking two random elements from each bucket H;. All the subsets X, will
have 2t elements with the possible exception of only one subset of size 3t.
Go to step 2.

5. If |Hy| < threshold/t then let {a,b} be the farthest pair in Ul L Hi.

6. If dyas > dist(a,b) then return pp,q. else return {a, b}.

The proposed algorithm computes the same number of distances of the algorithm
in Section 2. Therefore it has complexity n(2t — 1) + O(logn + 9¥?), where n is
the size of the input, 6 is the threshold, and 2t is the size of rounds.

4 Experimental Results

Experiments have shown that Multiple-Winners variants of the algorithms per-
form better than the respective Single-Winner versions in terms of precision.
In order to further improve the precision, we applied consensus techniques
[18,19].

In our context, consensus consists of executing several independent runs of
a given randomized algorithm, which aims at approximating the solution of an
optimization problem. Then the best output of all runs is selected. Here we have
chosen to perform logn runs of both Single-Winner and Multiple-Winners verions
of 1-median and diameter computations.

Our implementations have been done in standard C (GNU-gcc compiler
v.2.96) and all the experiments have been carried out on a PC Pentium IV
2.8GHz with the Linux operating system (RedHat distribution v. 8.1). Each
experiment refers to 5,000 independent executions of the algorithm on a fized
input set.

Due to space limitations, here we report only the experiments relative to the
1-median algorithms. The corresponding group of experiments on the farthest
pair computation have similar results and can be found at the following address
(http://alpha.dmi.unict.it/~ct-nyu/diam.htm).

Asymptotic behavior of the 1-median algorithms. Experiments in Fig. 1
report the relative frequencies histograms showing the empirical distribution of

Multiple-Winners Randomized Tournaments with Consensus 271

Asymptotic analysis of the output (1)
(a) Multiple-Winners (b) Single-Winner

L iz

Wi 4 s

i

J 1y |
o AL ||I ||. L I|.J.||.4..I..L.._..|.J i a R oo i cone
a 20 40 0 &0 100 120

o 100 200 300 400 0 [ary TiKE
(¢) Multiple-Winners-With-Consensus (d) Single-Winner-With-Consensus
i gslon bbb Gonslunia b Jie ot i o e e R
0.z 0.08
15 4 .06
ol 4 i
LEEY ‘ 4 fhdr2 |
. “| [, . ‘ |H|||||| [T —
i 5 1 15 20 5 3 as A 45 a0 L] 20) aly =0 Ty

Fig.1. Relative frequencies histograms of the outputs. The abscissae refer to the
elements in the input set with the smallest weight, in increasing order. The leftmost
element is the exact 1-median of S. The ordinates show the corresponding winning
frequencies

the algorithms outputs, obtained with round size 2t = 4 for the Multiple-Winners
version and t = 3 for the Single-Winner version. The input set has size 10000,
it is drawn from [0,1]? with uniform distribution and it is equipped with the
Euclidean metric Lo. In Fig. 2, the input sets are taken from: (i) uniformly
distributed [0, 1]5° with the Euclidean metric Lo, (ii) clustered points in R? with
the Euclidean metric L, and (iii) randomly sampled Linux words with editing
distance.

In all groups of histograms, we notice that the proposed Multiple-Winners
algorithm (in both versions with and without consensus) has higher winning
frequencies of elements with lower weights than the the corresponding Single-
Winner version.

Histograms give the output precision of our algorithms in terms of the relative
position w.r.t. the exact 1-median. Nevertheless, in many applications, it is more
convenient to define the output quality in terms of the weight function w(), by
introducing the following values relatively to a generic input set S:

— mg = mingecg w(z), the minimum weight in S, i.e., the weight of the exact
1-median;
— Mg = max,es w(z), the maximum weight in S;

272 D. Cantone et al.

Asymptotic analysis of the output (2)
(a) Multiple-Winners (b) Single-Winner

L1,
5

L z 4 6 8 10 o 1n 15 0 25 30

(¢) Multiple-Winners (d) Single-Winner

1

008

006

004

0.0

0 10 0 an 40 a0 &0 [20 40 60 ki

o [
70 0 10 120
(e) Multiple-Winners (f) Single-Winner
05 —————————————————— [—————————————————e
.43 2
[012
035 ol
05
025 8
0z 1 0 |
[+AE3 o
[}
2
s i
0 ||| | I||| o Ilihhlua
[l gl 4 ol Eo RLLH) 12 140 S iL i 150 L)

Fig. 2. Frequencies histograms of the algorithms outputs with consensus. The input
sets are taken from: (in (a) and (b)) uniformly distributed [0 : 1]°%, (in (c) and (d))
clustered points in R?, (in (e) and (f)) sampled Linux words

— us = Ew(x)] and og = ofw(z)] (with z € S), i.e., the average and the
standard deviation of weights in S

— Wout = w(Output), the weight of the Output element returned by our algo-
rithm on input S.

Next we introduce the relative error, relatively to a single test on a random
input set S:

— €out = H -100, the percentage error distance defined w.r.t. the largest
range of values w(z), with « € S; the extreme values assumed by €, are
0% and 100%, when the minimum- and maximum-weight element in S are

returned by the algorithm, respectively.

Multiple-Winners Randomized Tournaments with Consensus 273

Figs. 3-(a) and (b) report the average percentage error distance E[e€y,:] and its

standard deviation o[€yy] of experiments performed with and without consensus
in [0,1)2 on a fixed set S.

Asymptotic analysis of the output (3)

(a) Multiple-Winners (b) Multiple-Winners-With-Consensus

5 3
L Tl gy | oot
6 - 6
1 al
0 . e i i S
10 1000 10000 100000 10 1001 10000 100000

Fig. 3. Average percentage error Fleo,n:] and standard deviation o[eout], w.r.t. the
input size, on fixed input set (a) Multiple-Winners(b) Multiple-Winners-With-Consensus

Clustered distribution dimension 50
(a) Multiple-Winners (b) Single-Winner

o

1000 “ucn o iET] uncn

((_:} Multiple-Winners-With-Consensus

R

(d) Single-Winner-With-Consensus

nanon an nn s

Fig. 4. Average percentage error Eleoy:] for different types of clustered distribution,
w.r.t. the number of clusters

274 D. Cantone et al.

Space dimensionality analysis

(a) Multiple-Winners (b) Single-Winner

0 " e T
5 5 T _
ﬁ [1]
10060 10000 TN 101 1000 100000
(c) Multiple-Winners-With-Consensus (d) Single-Winner-With-Consensus
| m= 10k b E m = 10k -
== me25 "] 4 - me2s .
al [Ty | p——— | F o R G——
E M
L5 0%

ol 1 0"
100 1 1000 1000 1onnn 1nnnic

Fig.5. Average percentage error E[eout], w.r.t. the input size, for different space
dimensions

Distribution and Space Dimensionality Analysis. Next we analyzed the
uniform distributions of ¢ clustered input sets containing n = 10°/c points each,
with ¢ = 3,4,5, and where ¢ = |log;yn|, 10, |\/n]. We generate ¢ random
clusters in [0, 1]%°, with uniform distribution in each cluster.

Clusters are characterized by a parameter 0 < p < % which determines
the wideness of clusters. Such clusters are generated using the same procedures
implemented for the experimental session reported in [4]. We use the Euclidean
metric Lo, with a round size 2¢ = 2 for the Multiple-Winners version and ¢t = 3
for the Single-Winner version. The average percentage errors E[e,,:] are shown
in Fig. 4, with wideness factor p = 0.2.

Results in Fig. 5 allow one to evaluate the performance of our algorithm in
the case of a [0, 1)™ metric space equipped with the metric Ly, for m = 10, 25, 50,
with uniformly generated data.

Real world data-sets analysis. Finally we computed the average percentage
error Eleyyt] of our algorithm on input data—sets_ extrapolated from real world
databases. In Fig. 6-(a) the input set of n = 10%, with ¢ = 2, 3,4, is randomly

Multiple-Winners Randomized Tournaments with Consensus 275

Real world data-sets analysis

Strings (a) without consensus wilh consensus
5 ’
Multiple Winners - 1 [Multiple Winners With Consensus
3 Single-Witner e = | Single-Winner-With-Consensz - e
. 2}
i L5 |

2 1
L 05 - s -
m 0

10 1000 1000y Lo 1060 L0y

Images (b) without consensus with consensus

] i

. Multiple-Winners Multiple-Winners-With-Consensus
o o -, : Single-Winner -—--—=—--—] Single-Winner-With-Consensis --—--—---—
4 \\‘\\ 2r

\\\ .\\\
3 LT 1.5
\\\ .,
2 i e 1
e]

1 N ns -
[Q ““_'

100 1000 [RUIHEL 1o 1000 LOHE

Fig.6. Average percentage error Eleoy:] for (a) the strings metric space with the
minimum edit distance, (b) the images metric space with Euclidean distance

chosen from the Linux Dictionary,! using the round size 2t = 4 for Multiple-
Winners variant and ¢ = 3 for Single-Winner version. In Fig. 6-(b) the input set of
n = 10%, with i = 2,3, 4, is randomly chosen from the Corel images database [2].
Each image has been characterized by its colors histograms, represented in the
Euclidean metric space R32.

5 Conclusion

O(nlogn) extensions of linear randomized tournaments techniques to better
approximate solutions of optimization problems in metric spaces have been pre-
sented. The proposed extensions replace Single-Winner rounds with Multiple-
Winners ones. Using a logarithmic consensus strategy further improves precision.
Applications to 1-median and diameter computation have been considered. Ex-
periments on both real and synthetic data showed that such newly proposed
versions significantly outperform the Single-Winner strategy.

! The dictionary is contained in the text file /usr/share/dict/linux.words, under the
Linux Mandrake v.8.1.

276

D. Cantone et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

V. Auletta, D. Parente, and G. Persiano. Dynamic and static algorithms for opti-
mal placement of resources in a tree. Theoretical Computer Science, 165:441-461,
1996.

M. Ortega Binderberger. Corel images database. UCI Knowledge Discovery in
Databases Archive, URL hitp://kdd.ics.uci.edu/, 1999.

A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms
for clustering problems in high dimensional spaces. Ann. ACM Symp. Theory of
Computing, pages 435-444, 1999.

T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search
queries. ACM Transaction on Database Systems, 24(3):361-404, 1999.

R. E. Burkard and J. Krarup. A linear algorithm for the pos/neg-weighted 1-
median problem on a cactus. Computing, 60(3):193-216, 1998.

D. Cantone, G. Cincotti, A. Ferro, and A. Pulvirenti. An efficient approximate
algorithm for the 1-median problem in metric spaces. SIAM Journal on Optimiza-
tion, 2005. To appear.

D. Cantone, A. Ferro, A. Pulvirenti, D. Reforgiato, and D. Shasha. Antipole tree
indexing to support range search and k-nearest neighbor search in metric spaces.
IEEE Transaction on knowledge and Data Engineering, 17(4), 2005.

C. Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic Pub-
lishers Group, The Netherlands, 1996.

W.B. Frakes and R. Baeza-Yates. Information Retrieval - Data Structures and
Algorithms. Prentice Hall, New Jersey, 1992.

Greg N. Frederickson. Parametric search and locating supply centers in trees. F.
Dehne and J.-R. Sack and N. Santoro, Editors, Algorithms and Data Structures,
2Nd Workshop WADS 91, Volume 519 of Lecture Notes in Computer Science,
pages 299-319, 1991.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
New York, 1990.

V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Clustering large
datasets in arbitrary metric spaces. Proceedings of the IEEE 15th International
Conference on Data Engineering, pages 502-511, 1999.

A. Goel, P. Indyk, and K.Varadarajan. Reductions among high dimensional prox-
imity problems. Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 769-778, 2001.

T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293-306, 1985.

E. Gusfield. Efficient methods for multiple sequence alignments with guaranteed
error bounds. Bulletin of Mathematical Biology, 55:141-154, 1993.

P. Indyk. Sublinear time algorithms for metric space problems. Proceedings of the
81st Annual ACM Symposium on Theory of Computing, pages 428—434, 1999.

P. Indyk. Dimensionality reduction techniques for proximity problems. Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 371—
378, 2000.

Motwani R. and Raghavan P. Randomized Algorithms. Cambridge University
Press, 2000.

Swift S., Tucker A., Vinciotti V., Martin N., Orengo C., Liu X., and Kellam P. Con-
sensus clustering and functional interpretation of gene-expression data. Genome
Biology, 5(11), 2004.

On Symbolic Scheduling Independent Tasks with
Restricted Execution Times

Daniel Sawitzki*

University of Dortmund, Computer Science 2
D-44221 Dortmund, Germany
daniel.sawitzki@cs.uni-dortmund.de

Abstract. Ordered Binary Decision Diagrams (OBDDs) are a data
structure for Boolean functions which supports many useful operations.
It finds applications in CAD, model checking, and symbolic graph algo-
rithms. We present an application of OBDDs to the problem of schedul-
ing N independent tasks with k different execution times on m identical
parallel machines while minimizing the over-all finishing time. In fact,
we consider the decision problem if there is a schedule with makespan
D. Leung’s dynamic programming algorithm solves this problem in time
O(logm . NQ(I“*I)). In this paper, a symbolic version of Leung’s algo-
rithm is presented which uses OBDDs to represent the dynamic program-
ming table T'. This heuristical approach solves the scheduling problem
by executing O(k log mlog(mD)) operations on OBDDs and is expected
to use less time and space than Leung’s algorithm if T is large but well-
structured. The only known upper bound of O((m . D)3k+2) on its re-
source usage is trivial. Therefore, we report on experimental studies in
which the symbolic method was applied to random scheduling problem
instances.

1 Introduction

The problem of nonpreemptively scheduling N independent tasks with integral
execution times on m identical and parallel machines while minimizing the over-
all finishing time (the makespan) is one of the most fundamental and well-studied
problems of deterministic scheduling theory. It is known to be NP-hard in the
strong sense [5]. In this paper, we consider the restricted case that the tasks
have only a constant number k of different execution times. Moreover, we are
interested in the decision problem if there is a schedule with makespan not larger
than D. This restricted problem is simply referred to as scheduling problem
throughout this paper.

Definition 1 (Scheduling Problem). A scheduling problem P consists of
k execution times t1,...,tx € IN, corresponding demands Ny,..., Ny € IN, a

* Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research
Cluster “Algorithms on Large and Complex Networks” (1126).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 277-289, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

278 D. Sawitzki

number m of machines, and a makespan bound D. The over-all demand of P
is defined by N := ", ... N;.

A schedule S: {1,...,k} x {1,...,m} — IN for a scheduling problem P is
called valid if 3372, S(i,j) > N; for everyi € {1,...,k} and Zle t;-S(i,7) < D
for every j € {1,...,m}.

A scheduling algorithm has to decide if there is a valid schedule S for P.

Leung [13] presents a scheduling algorithm with time (’)(log m- Nz(’“’l)) and
space (’)(logm - N (k_l)). Following a dynamic programming approach, it com-
putes a table T of O(logm - N*~1) partial solution values. The author considers
the algorithm as polynomial for constant k because the input size of general
scheduling problems is 2(N). However, due to the restriction to k different exe-
cution times, the input can be represented by 2k + 2 numbers of length log(mD).

The idea behind the symbolic scheduling algorithm presented in this paper
is to use Ordered Binary Decision Diagrams (OBDDs) [3,4,22] to represent the
dynamic programming table 7. OBDDs are a data structure for Boolean func-
tions offering efficient functional operations, which is well-established in many
areas like CAD, model checking [8, 14], and symbolic graph algorithms [9, 18,17,
20,23]. Tt is known to be a compact representation for structured and regular
functions and allows to compute many table entries in parallel by few operations
applied to the corresponding OBDDs. On the one hand, we expect this approach
to require essentially less space than Leung’s method; on the other hand, this
implies also less runtime, because the efficiency of OBDD operations depends on
the size of their operands.

In order to analyze the behavior of symbolic OBDD-based heuristics, we have
to analyze the OBDD size of all Boolean functions occurring during their exe-
cution. This is known to be a difficult task in general and has been done only
in a few pioneer works so far [18,20,21,23]. So in most papers the usability of
symbolic algorithms is just proved by experiments on benchmark inputs from
special application areas [9, 10,12, 15, 24]. In other works considering more gen-
eral graph problems, mostly the number of OBDD operations (often referred to
as “symbolic steps”) is bounded as a hint on the actual runtime [2, 6,7, 16].

To evaluate the usefulness of the presented scheduling method, it has been
implemented and applied to random input instances for k = 3 due to three pop-
ular distributions of execution times. On these instances, the symbolic algorithm
was observed to beat Leung’s scheduling algorithm w.r.t. time and space if the
product P := II j]:lle of task quantities is sufficiently large.

The paper is organized as follows: Section 2 introduces OBDDs and the op-
erations offered by them. Then, Sect. 3 gives some preliminaries on symbolic
algorithms and their notation. After a brief description of Leung’s algorithm
in Sect. 4, we present the symbolic scheduling method in Sect. 5. The exper-
iments’ setting and results are documented in Sects. 6 and 7. Finally, Sect. 8
gives conclusions on the work.

On Symbolic Scheduling Independent Tasks 279

2 Ordered Binary Decision Diagrams (OBDDs)

We denote the class of Boolean functions f: {0,1}" — {0,1} by B,. The ith

character of a binary number z € {0,1}" is denoted by z; and || := 327" ;2
identifies its value.
A Boolean function f € B,, defined on variables xg,...,x,_1 can be repre-

sented by an Ordered Binary Decision Diagram (OBDD) [3,4]. An OBDD G
is a directed acyclic graph consisting of internal nodes and sink nodes. Each
internal node is labeled with a Boolean variable z;, while each sink node is
labeled with a Boolean constant. Each internal node is left by two edges one
labeled by 0 and the other by 1. A function pointer p marks a special node
that represents f. Moreover, a permutation m € X, called variable order must
be respected by the internal nodes’ labels on every path from p to a sink. For
a given variable assignment a € {0,1}", we compute the function value f(a)
by traversing G from p to a sink labeled with f(a) while leaving a node z; via
its a;-edge.

An OBDD with variable order 7 is called 7-OBDD. The minimal-size 7-
OBDD g for a function f € B, is known to be canonical. Its size size(G) is
measured by the number of its nodes and will be denoted by 7G[f]. We adopt
the usual assumption that all OBDDs occurring in symbolic algorithms have
minimal size, since all essential OBDD operations produce minimized diagrams.
On the other hand, finding an optimal variable order leading to the minimum
size OBDD for a given function is known to be NP-hard. There is an upper
bound of (2 + 0(1))2"/n for the OBDD size of every f € B,,.

The satisfiability of f can be decided in time O(1). The negation f as well
as the replacement of a function variable z; by a constant a; (i.e., fz,=a,)
is obtained in time O(size(rG[f])) without enlarging the OBDD. Whether
two functions f and g are equivalent (i.e., f = g) can be decided in time
O (size(wG[f]) +size(mG[g])). These operations are called cheap. Further essential
operations are the binary synthesis f®g for f,g € By, ® € By (e.g., “A” or “V”),
and the quantification (Qux;)f for a quantifier Q € {3,V}. In general, the result
TG[f @ g] has size O (size(rG[f]) - size(rG[g])), which is also the general runtime
of this operation. The computation of 7G [(Qz:,) f] can be realized by two cheap
operations and one binary synthesis in time and space (Q(Size2 (mg]| f]))

The book of Wegener [22] gives a comprehensive survey on different types of
binary decision diagrams.

3 Preliminaries on Symbolic Algorithms

The functions used for symbolic representations are typically defined on a num-
ber of m subsets of Boolean variables, each having a certain interpretation within
the algorithm. We assume w.1. 0. g. that all arguments consist of the same num-
ber of n Boolean variables. If there is no confusion, both a function f € B,
defined on (M ... 2™ € {0,1}" as well as its OBDD representation 7G|[f]

280 D. Sawitzki

will be denoted by f in this paper. Quantifications (Qxéi), Y) over all n

»Pn—1

variables of argument ¢ will be denoted by (Qx(i)).

Argument reordering. Assume that each of the m function arguments
2D, xm e {0,1}™ has its own variable order 7; € X,. The global
order m € X, is called m-interleaved if it respects each 7; while
reading variables xy) with same bit index j en bloc, that is, = :=

(1) (2) (m) (1) (m)
(xn(o)’ Loy (022 T (0 Ty (1) 7+ xrm(nq)) .

Let p € X, and f € B,,, be defined on variables W, 2™ e {0,1}™.
A function ¢ € B, is called the argument reordering of f w.r.t. p if
g(z®, .. 2m) = f(2(e@) . 2P(m)) Computing argument reorderings is
an important operation of symbolic algorithms and is possible in linear time and
space O(n) if an m-interleaved variable order is used and m is constant (see [19]).

Multivariate threshold and modulo functions. The symbolic scheduling
algorithm contains comparisons of weighted sums with threshold values like
f(z,y, z) == (a-|z|+bly| > T),a,b,T € Z, which can be realized by multivariate
threshold functions.

Definition 2 (Woelfel [23]). Let f € Bp, be defined on variables
M 2z € {0,1}". Then, f is called m-variate threshold function iff there
are W e N, T € Z, and wy,...,wy, € {—W,...,W} such that

f(x(l),...,x(m)) _ (Zw . ‘xu) > T)
=1

Clearly, the relations >, <, <, and = can be composed of multivariate threshold
functions. For constant W and m, such comparisons have m-OBDDs of size
O(n) for an m-interleaved variable order 7 with increasing bit significance (i. e.,
7; = id) [23]. These OBDDs can be computed efficiently in linear time.

Moreover, the symbolic scheduling algorithm makes use of multivariate mod-
ulo functions.

Definition 3 (Woelfel [23]). Let f € Bp, be defined on wvariables
M 2 € {0,1}". Then, f is called m-variate modulo function iff there
are M e N, T € Z, and wy, ..., w, € Z such that

f(x(l), . ,x<m)) - <§: w; - ‘x(n
=1

For constant M and m, m-variate modulo functions have 7-OBDDs of size O(n)
using an m-interleaved variable order 7 with increasing bit significance (i.e.,
7; = id) [23]. These OBDDs can be computed efficiently in linear time.

We conclude that all essential functional operations are realized efficiently by
OBDDs w.r.t. the corresponding OBDD size if an interleaved variable order is

mod M = T)

On Symbolic Scheduling Independent Tasks 281

used. Therefore, this property is assumed in the following. This is also crucial
for threshold and modulo functions to have compact OBDDs, which will be the
building blocks of all Boolean functions computed by the symbolic scheduling
algorithm.

4 The Scheduling Algorithm of Leung

Let P be a scheduling problem according to Def. 1. and assume that log,(m) €
IN. Leung’s algorithm [13] computes a k-dimensional table T' with entries
T(f,il,...ﬂ;k_l) for ¢ = 0,...,10g2m, ij = 0,...,Nj, and] = 17...,]6 — 1.
Such an entry contains the maximum number I of tasks of type k that can
be scheduled onto 2¢ machines together with i; tasks of type j for all types
j=1,... k-1

We define upper bounds B, := min{N,, |D/t;|}, j =1,...,k, for the maxi-
mum number of tasks of type j that can be scheduled onto one machine. Let us
consider the case £ = 0: If 0 <i; < Bjforj=1,...,k—1and D > Zkflt]wij,

j=1
itis I = KD - 25;11 t; ~ij>/th; else, we define I := —1.

Having computed all H]]-:ll (N; + 1) entries T'(¢,i1,...,i,—1) for some ma-
chine count 2¢, the entries for 21 machines are obtained by

T+ 1i,. .. ig—1) ;== max {1, T(0,i], ... i_y) + T(L,37,...,i{_1)

|Vje{l,....k=1}:d5,07 € {0,...,N;}, iy =4 + 17,

T(f’ Z/17 . 'ai;q—l) 7é -1 7é T(f,i&l, < 'ai%—l)} . (1)

This procedure can be easily modified to cope with values m that are
not powers of 2. Finally, there is a wvalid schedule for P if and only
if T(logym,N1,...,Ny-1) > Ni. Altogether, O(logm - I}~ (N; +1)) =
O(logm'Nkfl) table entries are computed, each one as maximum over
(’)(H]’.“;ll (N; +1)) = O(N*1) vectors (if,...,i,_;) implying the runtime com-
plexity (’)(logm . Nz(k_l)).

The minimal makespan can be found by a binary search using
O(log max {t1,...,t;}) executions of Leung’s algorithm (see [13]). By storing
the optimal partition vector (z’l, .. ,i;cfl) for each table entry, the algorithm
can easily be extended to compute an optimal schedule if one exists.

5 The Symbolic Scheduling Algorithm

We again assume that log,(m) € IN. Moreover, it is reasonable to require t; < D
and N; < mD for i = 1,...,k. Then, [logy(mD + 1)] =: n Boolean variables
suffice to represent the number arguments of all Boolean functions occurring
during the algorithm.

282 D. Sawitzki

The symbolic scheduling algorithm works with characteristic Boolean func-
tions xr.¢ € By of Leung’s dynamic programming table T defined by

XTg(x(l),...,x(k)) =1:& T(é, ‘x(l)‘ R ‘x(k_l))) = ‘x(k)‘

for ¢ = 0,...,log, m and vectors /) € {0,1}", j = 1,... k. The binary value
of 1) corresponds to the number i; of tasks in Sect. 4. Because |x(k)| is non-
negative, xr ¢ is false for table entries —1.

In order to compute the initial function xr,, we express the conditions for
¢ = 0 stated in Sect. 4 in terms of Boolean equations using multivariate threshold
and modulo functions as building blocks. At first, we state a function g for the

condition |x(k)| = L(D - 21;;11 tj - |x(j)|>/th, which is equivalent to

k—1 k—1
D—th-‘x<j>‘=‘x<’“>‘-tk+ D—th-‘x(j)‘ mod t; .
Jj=1 j=1

This leads to the following symbolic formulation for g which can be computed by
subsequent applications of OBDD operations starting with multivariate thresh-
old and modulo functions. It uses two vectors y,z € {0,1}" of intermediate
helping variables.

k—1
9<x(1),...,x(k)> = (Fy, 2) lyl :D_th ' ‘x(])‘
j=1

A2l < i) A Iyl = 2] mod b = 0) A (Jy] = [« - ¢, +]2])

Altogether, the initial function x7 ¢ is obtained by

o) = A (] < 1)
Jj=1

k-1
A DZth-‘x(j)‘ /\g(x(l),...,x(k)).

j=1

At next, the iterative step (1) is realized in terms of OBDD operations
using 2k + 1 vectors y,u™ v . u®) v € {0,1}" of intermediate help-
ing variables. Assume that yr, has already been computed for some ¢ €
{0,...,logy, m — 1}. We define hsy1 € By, as

On Symbolic Scheduling Independent Tasks 283

hett (33(1), ceey x(k)) = (Hu(l)7 U(l), e u(k—l)’ U(k—l))

k—1
/\ (’xu)’ _ ’uu)’ 4
j=1

U(j)D N XT.e (u(l), S ,u(k)) AN X1, (v(l), . ,v(k))

That is, hyy1 represents load vectors (|x(1)| ey |.13(k) |) that can be partitioned
into loads (|u(1)| R |u(k)|) and (|v(1)| sy |v(k)|) each fitting onto 2¢ ma-
chines while respecting makespan bound D.

Finally, we have to guarantee the maximality of the number of type-k-tasks:

XT, 041 (x(l)v s 7x(k)> = hf+1 (x(l)v cee 7x(k)>

A (Hy) [(|y| > |x(k)|) A hf+1(x(1)a s »m(kil)ay)} .

That is, there is no number |y| of type-k-tasks greater than ‘x(k)| that can also
be distributed onto 2! machines according to hy ;.

Having computed Xt 10g,m this way, we replace each variable vector
) by the binary representation of N; for j = 1,...,k — 1. Then, the
unique satisfying assignment of the remaining variables z(®) correspond to
T(logg m, N1, ..., Ni_1) which is compared to Nj. The correctness follows from
the correctness of Leung’s algorithm. We have solved scheduling problem P
following Leung’s approach by using a symbolic OBDD representation for the
dynamic programming table T.

Similar to Leung’s algorithm, the symbolic scheduling methods can be easily
modified to handle arbitrary numbers m of machines as well as to compute
concrete schedule S.

Theorem 1. The symbolic scheduling algorithm solves a scheduling problem P
with task execution times ty, ..., tx, task demands N1, ..., N, machine count m,
and makespan bound D by executing O(klogmlog(mD)) operations on OBDDs
defined on (3k + 2)n Boolean variables with n := [logy(mD + 1)].

Proof. We compute log, m + 1 Boolean functions xr, with £ = 0,...,logy, m.
Each function occurring during the algorithm is defined on no more than
(3k + 2)n variables and computed by a constant number of binary syntheses
and quantifications over variable vectors of length n. Altogether, each x7 , takes
O(klog(mD)) OBDD operations. O

The upper bound of (2 + 0(1))2”/n for the OBDD size of every f € B,
implies a maximum OBDD size of O((mD)3k+2). Hence, each OBDD operation
takes time O((mD)6k+4) in the worst case. After having computed x7.¢41 we
may discard x7,¢. Therefore, O((mD)g’”z) is also an upper bound on the over-
all space usage. Of course, these theoretical bounds cannot compete with the
complexity of Leung’s algorithm.

Nevertheless, we hope that heuristical methods like the symbolic scheduling
algorithm perform much better than in the worst case when applied on practical

284 D. Sawitzki

problem instances or in the average case. Then, they are expected to beat known
algorithms with better worst-case behavior. Hence, we applied the presented al-
gorithm to randomly generated instances hoping that structures and regularities
of table T lead to compact OBDDs for the functions xr, and, therefore, to an
efficient over-all time and space usage.

6 Experimental Setting

The symbolic scheduling algorithm was implemented! in C++ using the gcc
2.95.3 and the OBDD package CUDD 2.3.1 by Fabio Somenzi.? Initially, an
interleaved variable order with increasing bit significance is used for the Boolean
variables of each function argument. After quantification operations, the actual
variable order 7 is heuristically optimized by permuting three adjacent variables
while keeping 7 interleaved. This is iterated until a local optimum is reached
(see [11]).

The scheduling problem instances P generated for the experiments have a
load sum L := Zle t; - N; with mean E[L] = M := (mD)/1.2. That is, the
effective capacity mD is 20% larger than the expected load. This is achieved by
first drawing a uniformly distributed fraction F}; of M such that Zle F;=M
for each task type j = 1,...,k. Then, the number N; of tasks of each type j is
drawn uniformly due to a mean parameter E[N;]. Finally, the execution times
t; are drawn due to the uniform, exponential, or Erlang distribution (shape
parameter 2) with mean E[t;] := F;/N;, which are common distributions in
modeling synthetic scheduling instances (see, e.g. [1]).

k k k
E[L]=) Elt;-N;J=) E[t;]-N; =Y Fj=M
j=1 j=1 j=1
This random procedure has parameters m, D, and E[N;] for j = 1,... k.

The values t; and N; are rounded randomly to integers. Moreover, only those
instances are accepted that fulfill the conditions ¢; < D, N; < mD, and t; # t;
for1<j<j <k.

The experiments consist of three series with m.D = 800, 1600, 3200 and k£ = 3.
Within each series, m was chosen to be 2, 4, 8, 16, and 32. For each setting,
20 instances have been generated due to the three execution time distribution
mentioned above. Moreover, 10 different values of E[N;] between (mD)/6 to
(mD)/3 have been used per series (E[N;] = --- = E[Ng]).

The experiments took place on a PC with Pentium 4 3GHz processor and 1
GB of main memory running Linux 2.4.21. The runtime has been measured by
seconds of process time, while the space usage is given as the maximum number

! Implementation and experimental data are available at http://thefigaro.
sourceforge.net/.
2 CUDD is available at http://vlsi.colorado.edu/.

On Symbolic Scheduling Independent Tasks 285

26
24

22
20
18 -
16

log P/S

14 -

log PA2/T

12 -
10 |

log PA2

(b) Time comparison for mD = 800

33
m 14
ENN)

m=8
m=16
m=32
0r Regression result

L m=16
% m=32
4 Regression result -----

20

log P/S
log PA2/T

log P log P2

(d) Time comparison for mD = 1600

35 T T T T T T T T
.
x
1 30 rr 3
[m=16 o - 1
Regression result -----
25 1
e S
=] i 20 E
g g

.
o

Y 1. E . g .
< ET H ol 835 |
s =% 3 1 g
ol sl
5 6 7 8 9 10 11 12 13 14 15 10 12 14 16 18 20 22 24 26 28 30
log P log PA2
(e) Space comparison for mD = 3200 (f) Time comparison for mD = 3200

Fig. 1. Experimental results on random instances with exponentially distributed exe-
cution times. P denotes IT J’-“;lle, S denotes the symbolic algorithm’s space, T denotes
the symbolic algorithm’s time

286 D. Sawitzki
of OBDD nodes present at any time during an algorithm execution. The latter
is of same magnitude as the over-all space usage and independent of the used
computer system.

7 Experimental Results

In order to compare Leung’s algorithm to the symbolic approach, we have to
take a closer look at the resources used by the former one. Because we exclu-
sively consider values m with log,(m) € IN, each subtable T'(¢,...) due to some
machine count can be discarded after having computed the subtable for £ + 1
machines. Moreover, we assume that N min {N,..., Ny}. Then, Leung’s
algorithm needs space {2 (U J’-leNj) and time Q(U j’.cz_ll NJ?).

We consider the experimental results for exponentially distributed execution
times: Figures 1(a), 1(c), and 1(e) show plots of the ratios P/S for P := HJ’:lle
and the symbolic algorithm’s space usage S for growing P using logarithmic
scales. Analogue, Figs. 1(b), 1(d), and 1(f) show plots of the ratios P?/T and
the symbolic algorithm’s time usage T for growing P?. We observe the symbolic
method to beat Leung’s algorithm w.r.t. both time and space for inputs with
high task demand products P.

Concretely, the presented plots for exponentially distributed execution times
as well as the omitted plots for the other two distributions hint to a linear
dependence of log(P/S) of log P resp. log (P?/T) of log P?. Therefore, a least
squares method has been used to fit parameters a; and b; for log(P/S) =
aj - log P + by resp. as and by for log(P?/T) = as - log P2 + by. Table 1 shows
the fitting results for all three values of mD and the three considered distribu-
tions. The gradients’ a; and as asymptotic standard errors never exceed 1.4%.

Table 1. Fits of a1 and by for P/S (Tab. 2(a)) resp. az and by for P?/T (Tab. 2(b))

Distribution / mDH

Uniform

800 1600 3200

1.28270 / -13.21930

1.32832 / -14.21380

1.36477 / -15.22760

Exponential

1.21732 / -12.77160

1.28701 / -13.93220

1.34987 / -15.22830

Erlang

1.26583 / -13.11690

1.37385 / -14.63660

1.44698 / -16.14440

(a) Fits for the symbolic algorithm’s space usage

Distribution / mD||

800

1600

3200

Uniform

1.06093 / -0.47254

1.08898 / -1.35841

1.12353 / -2.51579

Exponential

1.05560 / -0.43123

1.09418 / -1.55419

1.11825 / -2.50760

Erlang

1.06234 / -0.52043

1.11002 / -1.82228

1.15972 / -3.31591

(b) Fits for the symbolic algorithms time usage

On Symbolic Scheduling Independent Tasks 287

The Erlang distribution seems to result in slightly higher absolute values a
and |b].

The hypothesed linear dependencies imply P/S = P% 201 & § = pl=a1.27=0
resp. T = P?(1=22) . 2752 Due to 1 < ay,as < 1.5 (see Tab. 1), we conclude the
symbolic scheduling algorithm to have space usage 2%/ VP for ¢; = 1/(a; —
1) > 2 resp. time usage 272/ %P for ¢y = 1/(2a3 —2) > 1.

That is, the a- and b-parameters seem to depend only on mD and k while be-
ing independent of m. For fixed mD and k, the OBDD sizes shrink proportional
to /P leading to essentially smaller time and space than Leung’s algorithm.
Although only experiments with k = 3 are documented, these results have been
also observed for higher values k.

8 Conclusions

We presented a symbolic algorithm for the decision problem of scheduling in-
dependent tasks with restricted execution times. It solves the problem by per-
forming O(klog mlog(mD)) OBDD operations, while its final runtime and space
usage depends on the size of the OBDDs it generates. Therefore, it was applied
to random scheduling instances whose execution times were generated due to the
uniform, exponential, and Erlang distribution. On these instances, the symbolic
algorithm was observed to beat Leung’s scheduling algorithm w.r.t. time and
space if the product P := II J’.:lle is sufficiently large. For fixed mD and k,

the symbolic time and space usage is observed to grow as 9(1 / \C/TD) for some

constant ¢ > 1 depending on mD and the measured quantity.

Hence, we consider the application of OBDDs to Leung’s scheduling method
as a useful way to compress its dynamic programming table, which succeeds in
savings of runtime and space on inputs with large demand N. Future research
could address experiments on real world instances as well as several heuristics
like different strategies for OBDD variable reordering.

Acknowledgments. Thanks to Detlef Sieling, Ingo Wegener, and Berthold
Vocking for fruitful discussions.

References

[1] S. Albers and B. Schroder. An experimental study of online scheduling algorithms.
Journal of Experimental Algorithms, 7:3, 2002.

[2] R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis in nlogn symbolic steps. In Formal Methods in Computer-
Aided Design 2000, volume 1954 of Lecture Notes in Computer Science, pages
37-54. Springer, 2000.

[3] R.E. Bryant. Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In Design Automation Conference 1985, pages 688—694. ACM Press,
1985.

288

(4]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

D. Sawitzki

R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, 35:677-691, 1986.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected compo-
nents in a linear number of symbolic steps. In Symposium on Discrete Algorithms
2003, pages 573-582. ACM Press, 2003.

R. Gentilini and A. Policriti. Biconnectivity on symbolically represented graphs:
A linear solution. In International Symposium on Algorithms and Computation
2008, volume 2906 of Lecture Notes in Computer Science, pages 554—-564. Springer,
2003.

G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Kluwer Academic Publishers, Boston, 1996.

G.D. Hachtel and F. Somenzi. A symbolic algorithm for maximum flow in 0-1
networks. Formal Methods in System Design, 10:207-219, 1997.

R. Hojati, H. Touati, R.P. Kurshan, and R.K. Brayton. Efficient w-regular lan-
guage containment. In Computer-Aided Verification 1993, volume 663 of Lecture
Notes in Computer Science, pages 396—409. Springer, 1993.

N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision diagrams
based on exchanges of variables. In International Conference on Computer Aided
Design 1991, pages 472-475. IEEE Press, 1991.

H. Jin, A. Kuehlmann, and F. Somenzi. Fine-grain conjunction scheduling for
symbolic reachability analysis. In Tools and Algorithms for the Construction and
Analysis of Systems 2002, volume 2280 of Lecture Notes in Computer Science,
pages 312—326. Springer, 2002.

J. Y.-T. Leung. On scheduling independent tasks with restricted execution times.
Operations Research, 30(1):163-171, 1982.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
1994.

I. Moon, J.H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The
question in image computation. In Design Automation Conference 2000, pages
23-28. ACM Press, 2000.

K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. In Formal Methods in Computer-Aided Design
2000, volume 1954 of Lecture Notes in Computer Science, pages 143-160. Springer,
2000.

D. Sawitzki. Experimental studies of symbolic shortest-path algorithms. In Exper-
imental and Efficient Algorithms 2004, volume 3059 of Lecture Notes in Computer
Science, pages 482-497. Springer, 2004.

D. Sawitzki. Implicit flow maximization by iterative squaring. In SOFSEM 2004:
Theory and Practice of Computer Science, volume 2932 of Lecture Notes in Com-
puter Science, pages 301-313. Springer, 2004.

D. Sawitzki. On graphs with characteristic bounded-width functions. Technical
report, Universitdt Dortmund, 2004.

D. Sawitzki. A symbolic approach to the all-pairs shortest-paths problem. In
Graph-Theoretic Concepts in Computer Science 2004, volume 3353 of Lecture
Notes in Computer Science, pages 154-167. Springer, 2004.

D. Sawitzki. Lower bounds on the OBDD size of graphs of some popular functions.
In SOFSEM 2005: Theory and Practice of Computer Science, volume 3381 of
Lecture Notes in Computer Science, pages 298-309. Springer, 2005.

On Symbolic Scheduling Independent Tasks 289

[22] 1. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, Philadel-
phia, 2000.

[23] P. Woelfel. Symbolic topological sorting with OBDDs. In Mathematical Foun-
dations of Computer Science 2003, volume 2747 of Lecture Notes in Computer
Science, pages 671-680. Springer, 2003.

[24] A. Xie and P.A. Beerel. Implicit enumeration of strongly connected components.
In International Conference on Computer Aided Design 1999, pages 37-40. ACM
Press, 1999.

A Simple Randomized k-Local Election
Algorithm for Local Computations

Rodrigue Ossamy

LaBRI
University of Bordeaux I
351 Cours de la Libération
33405 - Talence, France
ossamy@labri.fr

Abstract. Most of distributed algorithms encoded by means of local
computations [3] need to solve k—local election problems to ensure a
faithful relabeling of disjoint subgraphs. Due to a result stated in [1], it
is not possible to solve the k—local election problem for k > 3 in anony-
mous networks. Based on distributed computations of rooted trees of
minimal paths, we present in this paper a simple randomized algorithm
which, with very high probability, solves the k-local election problem
(k > 2) in an anonymous graph.

Keywords: Local computations, election in graphs, distributed algorithms,
randomized algorithms.

1 Introduction

The problem of election is linked to distributed computations in a network. It aims
to choose a unique vertex, called leader, which subsequently is used to make de-
cisions or to centralize some information. For a fixed given positive integer k, a
k-local election problem requires that, starting from a configuration where all pro-
cesses are in the same state, the network reaches a configuration C such that for
this configuration there exists a non empty set of vertices, denoted &, satisfying:

— each vertex v € £ is in a special state called leader and
— Vv € C and for all vertex w # v such that d(v,w) < k then w is in the state
lost (i.e. w & E).

We assume that each process has the same local algorithm. This problem is then
considered under the following assumptions:

— the network is anonymous: unique identities are not available to distinguish
the processes,

— the system is asynchronous,

— processes communicate by asynchronous message passing: there is no fixed
upper bound on how long it takes for a message to be delivered,

— each process knows from which channel it receives a message.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 290-301, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Simple Randomized k-Local Election Algorithm for Local Computations 291

Our goal is to perform k-local elections such that all the elected vertices should
be able to execute graph relabeling steps on disjoint subgraphs of radius g We
consider a network of processors with arbitrary topology. It is represented as a
connected, undirected graph where vertices denote processors and edges denote
direct communication links. At every time, each vertex and each edge is in some
particular state and this state will be encoded by a vertex or edge label. A
distributed algorithm is encoded by means of local relabeling: labels attached
to vertices and edges are modified locally, that is on a bounded subgraph of
the given graph according to certain rules depending on the subgraph only. The
relabeling is performed until no more transformation is possible.

For the sake of time complexity, we assume that each message incurs a delay
of at most one unit of time [2]. Note that the delay assumption is only used to
estimate the performance of our algorithms. This does not imply that our model
is synchronous, neither does it affect the correctness of our algorithms. That is,
our algorithms work correctly even in the absence of this delay assumption.

Here we first propose and analyze a randomized algorithm that solves the
k-local election problem for k > 2. This algorithm is based on distributed com-
putations of minimal paths rooted trees and works under the assumption that
each vertex has an unique identity. Afterward we derive a second algorithm which
solves the same problem without identities, with very high probability and with
an acceptable time complexity of O(k?).

This paper is organized as follows. Section 2 reviews definitions of graphs and
illustrates the notions of graph relabeling systems for distributed algorithms.
Section 3 is devoted to the distributed computation of a rooted tree of minimal
paths. In Section 4 we present and analyze our algorithms for solving the k-local
election problem in an anonymous network. Section 5 concludes the paper.

2 Definitions and Notations

2.1 Undirected Graphs

We only consider finite, undirected and connected graphs without multiple edges
and self-loops. If G is a graph, then V(G) denotes the set of vertices and E(G)
denotes the set of edges; two vertices u and v are said to be adjacent if {u,v}
belongs to E(G). The distance between two vertices u,v is denoted d(u,v). The
set of neighbors of v in G, denoted N¢(v), is the set of all vertices of G adjacent
to v. The degree of a vertex v is |[Ng(v)|. Let v be a vertex and k a non negative
integer, we denote by Bg(v,k), or briefly B(v,k), the centered ball of radius
k with center v, i.e., the subgraph of G defined by the vertex set V' = {v' €
V(G) | d(v,v') < k} and the edge set ' = {{v1,v2} € E(G) | d(v,v1) <
k and d(v,v2) < k}. Throughout the rest of this paper we will consider graphs
whose vertices and edges are labeled with labels from a recursive set £. A graph
labeled over £ will be denoted by (G, \), where G is a graph and A\: V(G) U
E(E) — L is the labeling function. The graph G is called the underlying graph
and the mapping A is a labeling of G.

292 R. Ossamy

2.2 Randomized 2-Local Elections

We present in this subsection the randomized procedure: RLs that solves the
2—local election problem. This procedure was introduced and analyzed in [6].
Let K be a nonempty set equipped with a total order.

RLs: Each vertex v repeats the following actions. The vertex v selects an in-
teger rand(v) randomly and uniformly from the set K. v sends rand(v) to
its neighbors. v receives messages from all its neighbors. Let Int,, be the
maximum of the set of integers that v has received from vertices different
from w. For all neighbors w, v sends Int,, to w. v receives integers from all
its neighbors. v wins the 2—Election in B(v,2) if rand(v) is strictly greater
than all integers received by v.

Fact 1. Let G = (V, E) be a graph. After the execution of RLs in G there are

at most % vertices v of G that have won the 2-local election.

2.3 Graph Relabeling Systems for Encoding Distributed
Computation

In this section, we illustrate, in an intuitive way, the notion of graph relabeling
systems by showing how some algorithms on networks of processors may be en-
coded within this framework [4]. According to its own state and to the states
of its neighbors (or a neighbor), each vertex may decide to realize an elemen-
tary computation step. After this step, the states of this vertex, of its neighbors
and of the corresponding edges may have changed according to some specific
computation rules. Graph relabeling systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the labeling of its com-
ponents (edges and/or vertices), the final labeling being the result,

(C2) they are local, that is, each relabeling changes only a connected subgraph of
a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the relabel-
ing only depends on the local context of the relabeled subgraph.

A formal definition of local computations can be found in [4]. Our goal is to
explain the convention under which we will describe graph relabeling systems
in this paper. If the number of rules is finite then we will describe all rules by
their preconditions and relabellings. We will also describe a family of rules by a
generic rule scheme (“meta-rule”). In this case, we will consider a generic star-
graph of generic center vy and of generic set of vertices B(vg,1). If A(v) is the
label of v in the precondition, then A (v) will be its label in the relabeling. We
will omit in the description labels that are not modified by the rule. This means
that if A(v) is a label such that X' (v) is not explicitly described in the rule for a
given v, then X (v) = A(v). The same definitions also hold for the relabeling of
edges.

A Simple Randomized k-Local Election Algorithm for Local Computations 293

An Example:

The following relabeling system performs the election algorithm in the family
of tree-shaped networks. The set of labels is L = {N, elected, non-elected}. The
initial label on all vertices is l[p = IN and there are two meta-rules that are
described as follows.

R1 : Pruning rule
Precondition :
e Avg) =N,
e 3'v e B(uvg,1),v # vg, A(v) = N.
Relabeling :
e \(vg) := non-elected.

R2 : Election rule
Precondition :
e \vg) =N,
e Vv € B(vg,1),v # vg, A\(v) # N.
Relabeling :
e \(vg) := elected.

Let us call a pendant vertex any vertex labeled NV having exactly one neighbor
with the label N. The meta-rule R1 consists in cutting a pendant vertex by giving
it the label non-elected. The label N of a vertex v becomes elected by the meta-
rule R2 if the vertex v has no neighbor labeled N. A complete proof of this
system may be found in [4].

3 Computation of a Rooted Tree of Minimal Paths

Let G = (V, E) be an anonymous network with a distinguished vertex U. The
problem considered here is to find a tree of (G, V'), rooted at U, which for any
v € V contains a unique minimal path from v to U. This kind of tree is generally
used to pass a signal along the shortest path from v to U (see Moore [7]).

To solve the above problem, we can simply fan out from U, labeling each
vertex with a number which counts its distance from U, modulo 3. Thus, U is
labeled 0, all unlabeled neighbors of U are labeled 1, etc. More generally, at the
tth step, where t = 3m+ ¢, m € N, ¢ € {0, 1,2}, we label all unlabeled neighbors
of labeled vertices with ¢ and we mark the corresponding edges. When no more
vertices can be labeled, the algorithm is terminated. It is then quite simple to
show that the set of marked edges represents a tree of minimal paths rooted
at U. In an asynchronous distributed system, where communication is due to a
message passing system, we do not have any kind of centralized coordination.
Thus, it is not easy for a labeled vertex to find out that all labeled vertices are
in the same step t. To get around this problem, we have slightly modified and
adapted the above procedure for distributed systems.

294 R. Ossamy

3.1 The Algorithm

Our algorithm works in rounds. All the vertices have knowledge about the
computation round in which they are involved, they also have a state that
indicates if they are locked or wunlocked. At the end of round i, all vertices
v € {w € V]d(w,U) < i} are labeled and locked. Initially, U is unlocked and
labeled 0. At round 1, all unlabeled neighbors of U are labeled 1 and locked. A
vertex w is said to be marked for a vertex v if the edge e = [w, v] is marked. For
further computations the algorithm has to satisfy the following requirements:

r1: Each time an unlabeled vertex is labeled, it is set in the locked state.
ro: A labeled unlocked vertex v # U becomes locked if:
— v is in the same round as all its marked neighbors,
— v does not have any unlabeled vertex in its neighborhood,
— All the marked neighbors w of v that satisfy d(U,w) = d(U,v) + 1 are
locked.
r3: A locked vertex v in round p becomes unlocked and increases its round, if it
has an unlocked marked neighbor w in round p + 1.

We encode this procedure by means of a graph relabeling system where the locked
and unlocked states are respectively represented by the labels F' and A. The root
is the only distinguished vertex labeled with R. Marked edges are labeled with
1. The set of labels is L = {0, 1, (z,d,r)} with « € {N, A, F, R} and d,r € N. d
and r respectively represent the distance from the root vertex (modulo 3) and
the computation round of a given vertex. The initial label on the root vertex
U is (R,0,1) and all the other vertices have the label I = (N,0,0). All the
edges have initially the label 0. Thus, the rooted tree computation is described
by Algorithm 1.

Algorithm 1.

R1 : Initializing the first level
Precondition :
® A(UO) = (R7 d,’l“),
e Jv € B(vg,1)(v # vo A Mv) = (N,0,0)).
Relabeling :
o X ([vo,v]) :=1,
e XN (v):=(F (d+1)%3,r).

R2 : Unlock the first level (part 1)
Precondition :
e \wvy) = (R,d,7),
e Vv € B(vg,1)(v # v AAw) = (F, (d+ 1)%3,7) A X[ve,v]) = 1).
Relabeling :
o X(vo) = (R,d,r+1),

A Simple Randomized k-Local Election Algorithm for Local Computations 295

R3 : Unlock the first level (part 2)
Precondition :
e \vg) = (R,d,r),
e Jv € B(vg,1)(v # vo AAw) = (F,(d+ 1)%3,7 — 1) A A([vg, v]) = 1).
Relabeling :
o \N(v):= (A, (d+1)%3,7).

R4 : Unlock the remaining levels
Precondition :
e \Nw) =(A,d,r),
e Jv € B(vg, 1)(v # vo AAw) = (F,(d+ 1)%3,7 — 1) A A([vg, v]) = 1).
Relabeling :
e XN (v):= (A, (d+1)%3,7)).

R5 : Add new leaves to the tree
Precondition :
e \Nwy) = (A,d,r),
e Jv € B(vg,1)(v # v9 A A(v) = (N, 0,0)).
Relabeling :
o« N () = (F.(d+ 1)%3,7)),
o X ([vo,v]) := 1.

R6 : Lock internal vertices of the tree

Precondition :
e \vg) = (A, d,r),
e Vv € B(vg,1)(v # vg A A(v) # (N,0,0)),
e Yw € B(vg, 1)(w # vo A M[vo,w]) =1 = (Av) = (F,(d+ 1)%3,r) Vv

Av) = (4, (d—1)%3,r) V A(v) = (R, (d—1)%3,7))).

Relabeling :

o N(vo) = (F,d,r).

Lemma 1. Let D be the diameter of graph G. At the end of roundi 1 <1i < D,
all the 1—labeled edges build a rooted tree T,, that contains the root ug and all
F—labeled vertices. T, has therefore a depth of i.

Proof. We show this lemma by induction on i. We recall that initially all vertices
different from U are labeled with (N, 0,0). During the execution of round i = 1,
only rule R1 can be executed. This round ends with the execution of rule R2.
Thus, only the neighbor vertices of U are F-labeled and they build (with U)
a tree 7} of minimal paths rooted at U. 7;} has therefore depth 1. Let 7;} be
the constructed tree after round 7. By the induction hypothesis we know that
all vertices v # U of Tj} are F-labeled. During the computation of round i + 1,
all the F-labeled are first unlocked (see rules R3 and R4). Thereafter, rule R5
increases the rooted tree by adding new F-marked vertices (at most one new
vertex per leave) to 7. At the end of round i + 1, all A-labeled vertices are

296 R. Ossamy

locked through rule R6. From the preconditions and the effects of the rules R5
and R6 we can deduce that TE}H is a minimal path tree rooted at U and having
depth ¢ + 1.

Corollary 1. Let v € V be o F—labeled vertex and p = {v,vo,v1...,v;,U0} @
path from v to ug such that all v;(i < j) are F—labeled and v; # wug, v; # Uk,
Vi, k < j. Then p is a minimal path from v to ug.

Adding two adequate relabeling rules makes it possible to generate rooted trees
of minimal paths having a depth k such that 1 < k < D, k € N. Such an
improvement and the corresponding proofs are presented in [8].

Lemma 2. Let T¢ be a rooted tree of depth d. The time complezity of construct-
ing T is O(d?) and the message complexity is O(|E| + n * d).

Proof. Let T represents the tree of minimal paths, of depth i and rooted at
vertex U. We recall that all vertices of 7% must be locked and unlocked for the
computation of TI}‘H. Thus, the worst case time and message complexity for
computing one path rooted at U of tree 7, is Z?zli = 0(d?),1 <d < D. With
D representing the diameter of G. Thus, the message complexity for computing
T4 starting from G is O(|E|+nxd) [5]. All the vertices v that satisfy the rules R2
and R3 can change their labels simultaneously. That is, we assume that a vertex
at depth ¢ sends messages to its neighbors at depth ¢ + 1 simultaneously. The
same fact is also true for the rules R4 and R5. For this reasons, we need 2(d+1)
time units to construct the tree ’T&Hl from 7;¢ . Thus, the time complexity of

our procedure is given by Zle 2% (i+1)=d(d+ 1) +2d = O(d?).

4 Solving the k-Local Election Problem

Starting from the rooted tree algorithm described in Section 3, we intend to
design a simple algorithm that should be able to solve the k-local election (k > 2)
in an anonymous network. Let I,, be the identity of a vertex v and (S,>) be a
structure model of tuples of the form (z1,x2) where z1 and x5 are real numbers
and (x1,22) > (x3,24) & (1 > 23) V (r1 = 23) A (z2 > x4). Basically this
algorithm works in three steps.

Procedure 1.

Step 1: Each vertex u chooses a random number 7, and takes advantage of its
tuple ny, = (ty,I,) € S to perform a 2—local election (RL3). The winners
and losers of these elections are respectively marked with W and L.

Step 2: Each W—marked vertex u starts the construction of the tree T¢ (with
depth d) of minimal paths rooted at u.

Step 3: Once T? is constructed for a given vertex u, the tuples of all the
W —marked vertices in T are compared to n,,. If n, > n,,Vv € T% v # u (v
is W-marked) then u has won the local election in the ball of radius k = d
centered on wu.

A Simple Randomized k-Local Election Algorithm for Local Computations 297

The use of minimal paths trees ensures that the tree T¢ contains all vertices of
the set {v € V(G)|d(u,v) < d}. We remind that Algorithm 1 was designed for
a single root. Thus, all labels were related to the computation of the same tree.
In Procedure 1, several trees have to be computed in a distributed way. For this
reason, the label of each vertex v, in the new algorithm, includes a set L, of
tuples representing the different states of v in the computations of all the rooted
minimal paths trees that contain v. Furthermore, to encode the marking of edges
and to distinguish the different elements of L,, we relax one specification of our
model and require that each vertex has a unique identity. The label of each
vertex v also indicates if v has won the RLs procedure. Moreover, it includes an
item that represents the label of v during the computation of the tree of minimal
paths rooted at v.

Remark 1. The use of identities is certainly a weak point of our algorithm. Nev-
ertheless, we will see that without identities, our algorithm solves the k—local
election with very high probability. Moreover, the structure (S, >) ensures that
at least one vertex terminates the election as winner. We are now ready to present
the basics of our algorithm for the k—local election problem (k > 2).

Definition 1. A tuple structure model (T,<) is an irreflexive total ordering of
tuples of the form (I, Su, My, T, My, Fo),Yv,w € V where:

— I, is the identity of a root node v,

— Sy 18 an element of the set {R, A, F'},

— My = d(v,w)%3,

— 0 < r¥ =d(v,w) <k is the round of vertex w in the computation of the
minimal path tree rooted at v,

— M, is the maximal tuple (on the minimal path between v and w) known by
w so far,

— FU is the identity of the father of vertex w in the minimal paths tree rooted

w
at v.

Definition 2. For all u,v,i,j € V, let t; = (I, siymg,ri, My, FP) and t; =
(Luy 85, m, 9, My, F}') be two elements of (T,<). Then

— t; :t;L if and only if I, = Ly, (mj + VA3 =my, rd =ri, F¥ =1;, s; = F
if sj=A and s; = F if s; = R. We say t; <t;.

— t; = t; if and only if I, = I, (m; — 1)%3 = my and v}, = r}, F}' = I,
si=Aifs;j=F ands;=Rifs; =F. We say t; <t;.

Let G be a graph, for each vertex v we assume that A\(v) = (Z,, Sy, Lo, tv, Ev)
where:

— T, is the identity of the vertex v,

— S, is an item that indicates the state of vertex v (L or W). Initially all
vertices are in the L state.

— L, is a set of elements of (7, <),

298 R. Ossamy

—t, is the label of vertex v in the tree of minimal paths rooted at v,

— &, is anitemthatindicates if vhas wonthe k—localelection (elected,non_elected).
Initially A\(v) = (22,82, £9,9) for all vertices v with Z0 = Z,, SY € {L,W},
L0 =0 and t) = (IU,R 0,1,n,,1,). All vertices are in the state non_elected.
Procedure 1 (Steps 2 and 3) is then computed by the relabeling rules given in
Algorithm 2.

Algorithm 2.

R1 : Initializing the first level
Precondition :
b /\(UO) (IvovsvoaLWW Uo) NSy, =
e Jv € B(vp,1)(v £ vg AVt € L(t = (Iw,:v My Ty Mooy Fi) A Iy #
I, Nz € {R,F,A})).
Relabeling :

o N (0) := (Lo, S0, Lo+t 10, E).

o)
R2 : Unlock the first level(part 1)
Precondition :
o Syo =W Ntyy = (Lugs Ry My, 700, My, Fr0),
o Vv € B(vo,1)(v # vg At € Ly).
Relabeling :
° t;o = Loy, Ry My, 700 4 1, My, F10),
® /\/(’UO) (IU()?S'UO"C'UO’ U078v0)~

R3 : Unlock the first level (part 2)

Precondition :
o Sy, =W ALy, = (Ly, R, My, vovao’]:ﬂ)
e Jv € Blvg, 1)(v # vo Aty € Ly(ti = (Log, F, (Mo, + 1)%3,770 —

1, My, F))).

Relabeling :
L d »Cv = »Cv — 14,
o t:= (Lyy, F, (my, +1)%3,7° + 1, M,, F}°),

hd Al(v) = (IU)SU7‘CU +t7t’uagv);

R4 : Unlock the remaining levels

Precondition :
e Jv € B(vo, 1)(v # voA3t; € L (3t ;€L (ti= (Lp, Fym, 7, My, FE)NA
ty = (I, A, (my = D%3,7% + 1, M,,,, F1,)))).
Relabeling :

o N (v) := (L, S0, Lo — tis tn, &),
o t; = (Ip,A,mv,T; + 17Mv7f5):
e N (v) = (Ty, Sy, Lo + tis 1y, E).

A Simple Randomized k-Local Election Algorithm for Local Computations 299

R5 : Add new leaves to the tree
Precondition :
e Jv € B(vg,1)(v #vo A3ty € Lo (ti = (Ip, A, My, 70, Moy, FP))),
o Ate Ly(t= (Ig,x,my,r), My, FI) NI, =)/\xE{RFA}
Relabeling :
"o M = maa(M,g,m,),
®t:= (Amvoa vaiv}—)

° /\’(v) = (Zy, Sv, Ly +ti &)

R6 : Lock internal vertices of the tree
Precondition :
o Ity € Lo (t; = (Ip, A, my,, o0 My, FD),
° VveB(vo,l)(v;ﬁvo/\Elt € L,(t; (Iq,ac,mv,r , My, FE) N FP
I,ANy =I,Ax € {R,F,A}) = t; = (I, F, (mv0+1)%3,7“p°,M FP)
tj = (Ip, A, (my, — 1)%3,7,°, My, FP) V L,
= (Ip, R, (my, — 1)%3, 75, My, F1)).
Relabeling :
hd A/ (UO) = (IU(NSUUVCUO - ti7t1}0351)0)?
e Vv € B(vo,1)(v # voA3t; € Ly(tj=(Ip, F, (M, +1)%3, 7,0, My, FL)A
FP =1,y Ny = I, = My, = max(M,,, M,))),
o ti:= (Ip, Fymyy, 1m0, My, Fh),
o)\ (UO) = (Iv()vS’Uo;E’Uo + t’Lvt’Uo?g’Uo)'

Remark 2. To know that a vertex v is already involved in the computation of the
tree rooted at a vertex w, one has in Algorithm 2 to look for an element ¢t € £,
whose root vertex has the same identity as w. This fact gives the above rules a
more complicated aspect as the rules described in Algorithm 1 . Nevertheless,
these rules exactly perform the same. The rules R5 and R6 ensure that each
time an internal vertex w is locked, the maximal known tuple M, is actualized
bottom-up. This actualization is done up to and including the vertices of the
first level. Some improvements of this algorithm are given in [8].

Corollary 2. During the computation of the rooted minimal paths tree T, at
the end of round i < D, v is aware of the maximum tuple n,, € S amongst the
tuples generated by all the W-marked vertices of T.

4.1 k-Local Election for Anonymous Networks

Due to the use of identities, Algorithm 2 is not adapted for anonymous networks.
We now present a variant of Procedure 1 that is able to solve the k-local election
problem in an anonymous network.

Procedure 2.

Step 1: Each vertex v chooses a random number n, and performs a 2—local
election (RLs3). The winners and losers of these elections are respectively
marked with W and L.

300 R. Ossamy

Step 2: Each W —marked vertex u chooses a random number n} and set its
identity to be the number n} .

Step 3: For each W—marked vertex u, we construct the tree TY (with depth
D) of minimal paths rooted at w.

Step 4: Once TP is constructed for a given vertex u, the chosen numbers of
all the W—marked vertices in T'” are compared to n’. If n} > ni Vv €
TP v # u (vis W-marked) then u has won the local election in its ball of
radius k = D.

Once the first two steps have been performed, the last parts of this procedure
can be computed effortlessly by Algorithm 2. Obviously, the correctness of Pro-
cedure 2 heavily depends on the absence of random numbers coincidences in the
whole network. That is, if two W-marked vertices generate the same random
number, the algorithm can not guarantee a faithful execution.

Remark 3. We assume that each vertex v selects at random wuniformly and in-
dependently an integer rand(v) from {1,..,N}. Let X be a set of vertices and v
a given vertex of X. Let |X| = h. Then under the above assumptions on rand
we obtain the probability,

N 4 N
=1

h—1
Pr(rand(v) # rand(w),Yw € X — {v}) = ! Z (Nl)

We need to reduce the value of Pr(rand(v) = rand(w),Vw € X — {v}). To
achieve this task, we assume in our framework that the set X represents the set
of all W-marked vertices in the network and that |X| < N. Due to Fact 1 we
know that | X| < ‘2L| Furthermore, the integer IV, which is the range of selection
for vertices, is supposed to be large enough, so that the probability of coincidence
of rand in the whole network becomes small. Thus,

N Mg
Pr(rand(v) = rand(w),Yw € X —{v})=1— ! Z < >)
z:l
N

Pr(rand(v) = rand(w),Yw € X — {v})=1— ﬁ Z (N — 1)%'—17

Pr(rand(v) = rand(w),Yw € X — {v}) =1 — (1 - N) o

This means that if IV is large enough, the probability that two vertices generate
the same random number converges to 0. This assumption is equivalent to the
one supposing that all vertices choose at random uniformly and independently
a real from the interval [0, 1].

Fact 2. With the requirements presented in Remark 3, Procedure 2 solves with
high probability the k-local election problem in an anonymous network.

A Simple Randomized k-Local Election Algorithm for Local Computations 301

Lemma 3. The time complexity of solving the k-local election for a vertex vy
is the same as the complexity required to compute a tree of minimal paths with
depth k and rooted at vo. Thus, the complexity of Procedure 2 is O(k?).

Proof. Let n = |V(G)|. The RLy procedure has a message complexity of O(n? +
>vec INa(v)]) = O(n? +n(n—1)). Under the time assumptions we have made,
it is easy to see that a given vertex vy knows, after a constant time, that it has
won or lost the 2-local election. Furthermore, Procedure 2 has also a worst case
message complexity of O(y(|E|+nxk)). With v < & representing the number of
vertices that have won the RLs procedure. The time complexity of solving the
k-local election problem for a given vertex vg is the same as the time required to
compute a tree of minimal paths with depth k& and rooted at vg. Thus, the time
complexity of our procedure is O(k?). This means that the time complexity of
solving the k-local election problem is not constrained by the topology of the
network nor by the size of the underlying graph G.

5 Concluding Remarks

We have presented a new randomized algorithm that, with very high probability,
solves the k—local election problem (k > 2) in anonymous networks. The pre-
sented protocol has already been successfully used to implement distributed graph
reduction algorithms. For further researches, we expect this algorithm to be an-
other step in the computation of more complex problems in the local computation
environment and more generally in the distributed computation framework.

References

1. D. Angluin. Local and global properties in networks of processors. In Proceedings
of the 12th Symposium on theory of computing, pages 82-93, 1980.

2. B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead.
In IEEE Symp. on Foundations of Computer Science, pages 514-522, 1990.

3. M. Bauderon, S. Gruner, Y. Métivier, M. Mosbah, and A. Sellami. Visualization of
distributed algorithms based on labeled rewriting systems. In Second International
Workshop on Graph Transformation and Visual Modeling Techniques, Crete, Greece,
July 12-13, 2001.

4. 1. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and distributed

algorithms. In H. Ehrig, H.J. Kreowski, U. Montanari, and G. Rozenberg, editors,

Handbook of graph grammars and computing by graph transformation, volume 3,

pages 1-56. World Scientific, 1999.

N. A. Lynch. Distributed algorithms. Morgan Kaufman, 1996.

6. Y. Métivier, N. Saheb, and A. Zemmari. Randomized local elections. Inform. Proc.
Letters, pages 313-320, 2002.

7. E.F Moore. The shortest path through a maze. In Proceedings of an International
Symposium on the theory of Switching, pages 285-292. Cambridge, Massachusetts,
Harvard University Press, Cambridg, 2-5 April 1959.

8. Rodrigue Ossamy. A simple randomized k-local election algorithm for local compu-
tations. Technical Report 1344-05, LaBRI-University of Bordeaux I, 2005.

ot

Generating and Radiocoloring Families of
Perfect Graphs

M.I. Andreou!, V.G. Papadopoulou?, P.G. Spirakis?, and B. Theodorides?,
and A. Xeros®*

! Intercollege, Makedonitissas Ave. 46, P.O. Box 24005, 1703 Nicosia, Cyprus
2 Research Academic Computer Technology Institute (RACTI) and
Patras University, Greece. Riga Fereou 61, 26221 Patras, Greece
andreou.m@intercollege.ac.cy,

{viki, spirakis, theodorb, zeros}@cti.gr

Abstract. In this work we experimentally study the min order Radio-
coloring problem (RCP) on Chordal, Split and Permutation graphs, which
are three basic families of perfect graphs. This problem asks to find an as-
signment using the minimum number of colors to the vertices of a given
graph G, so that each pair of vertices which are at distance at most
two apart in G have different colors. RCP is an NP-Complete problem
on chordal and split graphs [4]. For each of the three families, there
are upper bounds or/and approximation algorithms known for minimum
number of colors needed to radiocolor such a graph[4, 10].

We design and implement radiocoloring heuristics for graphs of above
families, which are based on the greedy heuristic. Also, for each one of
the above families, we investigate whether there exists graph instances
requiring a number of colors in order to be radiocolored, close to the
best known upper bound for the family. Towards this goal, we present a
number generators that produce graphs of the above families that require
either (i) a large number of colors (compared to the best upper bound), in
order to be radiocolored, called “extremal” graphs or (ii) a small number
of colors, called “non-extremal”instances. The experimental evaluation
showed that random generated graph instances are in the most of the
cases “non-extremal” graphs. Also, that greedy like heuristics performs
very well in the most of the cases, especially for “non-extremal” graphs.

1 Introduction

The Problem of Frequency Assignment (FAP) consists of assigning frequencies to
the transmitters of a wireless network exploiting frequency reusability in order
to save bandwidth, while keeping the interference caused when nearby stations
transmit in the same or close frequency, in acceptable levels. This problem is usu-
ally modelled as a vertex coloring problem. However, the vertex coloring model
fails to describe some realistic scenarios of practical wireless networks, because

* This work has been partially supported by the EU IST/FET projects CRESCCO.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 302-314, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Generating and Radiocoloring Families of Perfect Graphs 303

in this case the only requirement is to assign just different colors to adjacent
vertices in a graph. Henceforth, a number of generalizations of the vertex col-
oring problem have been introduced and investigated in the past, towards this
direction [8].

Here we study a variation of FAP, called min order Radiocoloring Problem
(min order RCP) [5], on three basic families of perfect graphs that of permutation,
chordal and split graphs. The problem consists of assigning colors (frequencies)
to the vertices (transmitters) of a graph (network), so that any two vertices of
distance at most two apart get different colors. The objective is to minimize
the number of distinct colors used. Permutation graphs model well networks
where two groups of independent transmitters want to have communication with
transmitters from the opposite group. Split graphs model networks where a
number of independent transmitters want to communicate with a set of strongly
communicated transmitters.

1.1 Definitions and Notation

Let G(V, E) be a graph. The size of G is the number of its vertices and is denoted
by n (i.e., n = |V]). W.Lo.g. we assume that V = {1,2,...,n}). We denote by
A(G) the maximum degree of G. When there is no confusion we omit G and we
refer to it simply as A. We denote as C, a cycle on x vertices (i.e., of size x)
in a graph G. A chord in a cycle is an edge joining two non-consecutive vertices
of a cycle. A cycle graph that does not have chords is called unchord. A tree
graph is denoted by T" and its root vertex by r. For a vertex v in T, we denote as
layer(v) its distance from the root plus one (1). The father of v in T is denoted
as father(v). The lowest common ancestor (LCA) of two vertices u,w in T is
denoted as LC A(u,w).

Definition 1. (/6/) The min order Radiocoloring Problem (min order
RCP) of a given graph G is the problem of coloring the graph G with a minimum
number of colors so that any two vertices of G of distance at most two apart get
different colors. The minimum such number is called the radiochromatic number
of G and is denoted by A\(G).

In this work, we concentrate only on min order RCP. Henceforth, for simplicity
reasons, we refer to it as the radiocoloring problem (RCP). In the following, uni-
formly random permutation of numbers 1 to n is a permutation of the vertices in
which the position of any number is chosen uniformly random from the positions
that are free in the permutation. The first family of perfect graphs considered is
that of permutation graphs. These graphs can be defined based on a permutation
of their vertices, i.e., a permutation 7 of numbers 1,2,...,n. Let us think of 7
as the sequence [my, g, -, m,]. We denote by 77;1 the position of number 7 in
the sequence.

Definition 2. [7] Let 7 = [m1, 72, -+, 7] be a permutation of numbers 1 to n.
Then, the permutation graph determined by 7 is the graph G[n] = (V, E) with
V ={1,---,n} and (i,j) € E iff (i — j)(m; " —7rj_1) < 0.

304 M.I. Andreou et al.

Observe that for any vertex i of G[n], j € V is a neighbor of ¢ iff i > j and ¢ is on
the left of j in permutation 7. A graph G is a permutation graph if there exists
a permutation 7 such that G is isomorphic to G[r]. Let a graph G(V, E) and a
permutation o of its vertices. We denote by G; = (V;, E;) the induced subgraph
of G on the vertices of the set V;, where V; = {0y, 0441, 0442, ...,0,} and o; is
the j-th vertex in o.

Definition 3. [7] An undirected graph G is chordal if each of its cycles of size
bigger than three has a chord. A vertex v of it, v is a simplicial vertex if the
neighbors of v form a clique in G. The ordering o is a perfect elimination scheme
(PES) if each vertex o; is a simplicial verter in G, for 1 <i < n.

Theorem 1. [7] An undirected graph G is chordal iff it has a PES.

Split graphs consist a subfamily of chordal graphs [7].

Definition 4. A split graph is a graph G(V, E) of which its vertex set can be
split into two sets K and S, such that K induces a cliqgue and S induces an
independent set (its vertices are not incident to each other).

In the experimental results shown, we denote n the size of the vertices of the
graph G, A the maximum degree of GG, p a probability and #Colors the number
of colors used by the radiocoloring algorithm evaluated on the graph G.

1.2 A Greedy Radiocoloring Heuristic

A basic radiocoloring heuristic investigated in this work is a simple greedy heuris-
tic, called Radiocoloring First Fit (RFF) Heuristic. This algorithm generalizes
the well known First Fit (FF) heuristic for ordinary vertex coloring. It takes as
input a predefined ordering O of the vertices of G and produces a radiocoloring
of G. Most of the heuristics developed in this work apply RFF radiocoloring
algorithm on various interesting orderings of the vertices of G. We denote by O;
the vertex located at position 4 of the ordering O.

Radiocoloring First Fit Heuristic (RFF)
Input: a graph G(V, E) and an ordering O of its vertices.
Output: a radiocoloring of G.

1. Fori:=1tondo:
color the vertex O; with the smallest color not assigned to any of its
distance one or two neighbors located on its left in the ordering O.

1.3 Previous Related Work

The radiocoloring problem has been studied in a number of theoretical works [5,
10, 1,4]. These works consider RCP on a number of interesting families of graphs,
such as: general, strongly chordal, paths, cycles, trees, graphs of diameter two,
grids, hypercubes, bipartite, planar, chordal, split, treewidth and outerplanar

Generating and Radiocoloring Families of Perfect Graphs 305

graphs, providing upper bounds, algorithms and hardness results. In contrast,
the problem has not been investigated in the past experimentally. From the best
of our knowledge, the only known experimental work on RCP is that of Andreou
et al. 3 [3] concentrated on planar graphs.

Here, we study at first time experimentally RCP on three families of perfect
graphs: permutation, chordal and split graphs. Most of the theoretical work done
for these families of graphs is by Bodlaender et al. and Sakai [4, 10]. Moreover,
from the best of our knowledge, this is the first work that concentrates on the
problem of generating graph instances of families of perfect